Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C_oC16_40_a_2b_b-001

This structure originally had the label AB2C_oC16_40_a_2b_b. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/K8N1
or https://aflow.org/p/AB2C_oC16_40_a_2b_b-001
or PDF Version

K$_{2}$CdPb Structure: AB2C_oC16_40_a_2b_b-001

Picture of Structure; Click for Big Picture
Prototype CdK$_{2}$Pb
AFLOW prototype label AB2C_oC16_40_a_2b_b-001
ICSD 10041
Pearson symbol oC16
Space group number 40
Space group symbol $Ama2$
AFLOW prototype command aflow --proto=AB2C_oC16_40_a_2b_b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

K$_{2}$CdSn


  • Space group $Ama2$ #40 allows an arbitrary choice of the origin of the $z$-axis. We use this to place the cadmium (4a) atom at the origin.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (4a) Cd I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{1} \,\mathbf{\hat{z}}$ (4a) Cd I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4b) K I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4b) K I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4b) K II
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4b) K II
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4b) Pb I
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4b) Pb I

References

  • R. Matthes and H.-U. Schuster, Synthese und Struktur der Phasen K$_{2}$CdSn und K$_{2}$CdPb, Z. Naturforsch. B 34, 541–543 (1979), doi:10.1515/znb-1979-0403.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=AB2C_oC16_40_a_2b_b --params=$a,b/a,c/a,z_{1},y_{2},z_{2},y_{3},z_{3},y_{4},z_{4}$

Species:

Running:

Output: