AFLOW Prototype: AB2C_oP8_51_e_be_f-001
This structure originally had the label AB2C_oP8_51_e_be_f. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/LY1V
or
https://aflow.org/p/AB2C_oP8_51_e_be_f-001
or
PDF Version
Prototype | Bi$_{2}$Ni$_{3}$S$_{2}$ |
AFLOW prototype label | AB2C_oP8_51_e_be_f-001 |
Mineral name | parkerite |
ICSD | 70052 |
Pearson symbol | oP8 |
Space group number | 51 |
Space group symbol | $Pmma$ |
AFLOW prototype command |
aflow --proto=AB2C_oP8_51_e_be_f-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}$ |
Ni$_{3}$(Bi, Pb)$_{2}$S$_{4}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}b \,\mathbf{\hat{y}}$ | (2b) | Ni I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (2b) | Ni I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+c z_{2} \,\mathbf{\hat{z}}$ | (2e) | Bi I |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- c z_{2} \,\mathbf{\hat{z}}$ | (2e) | Bi I |
$\mathbf{B_{5}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ | (2e) | Ni II |
$\mathbf{B_{6}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- c z_{3} \,\mathbf{\hat{z}}$ | (2e) | Ni II |
$\mathbf{B_{7}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (2f) | S I |
$\mathbf{B_{8}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (2f) | S I |