AFLOW Prototype: AB2_hP9_156_2ab_a2b3c-001
This structure originally had the label AB2_hP9_156_b2c_3a2bc. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/0FK1
or
https://aflow.org/p/AB2_hP9_156_2ab_a2b3c-001
or
PDF Version
Prototype | CdI$_{2}$ |
AFLOW prototype label | AB2_hP9_156_2ab_a2b3c-001 |
ICSD | none |
Pearson symbol | hP9 |
Space group number | 156 |
Space group symbol | $P3m1$ |
AFLOW prototype command |
aflow --proto=AB2_hP9_156_2ab_a2b3c-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak z_{9}$ |
PdTe$_{2}$, PtTe$_{2}$, SnS$_{2}$ (berndtite)
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $z_{1} \, \mathbf{a}_{3}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (1a) | Cd I |
$\mathbf{B_{2}}$ | = | $z_{2} \, \mathbf{a}_{3}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (1a) | Cd II |
$\mathbf{B_{3}}$ | = | $z_{3} \, \mathbf{a}_{3}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (1a) | I I |
$\mathbf{B_{4}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (1b) | Cd III |
$\mathbf{B_{5}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (1b) | I II |
$\mathbf{B_{6}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (1b) | I III |
$\mathbf{B_{7}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (1c) | I IV |
$\mathbf{B_{8}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (1c) | I V |
$\mathbf{B_{9}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (1c) | I VI |
PAULING FILE Multinaries Edition – 2022(2022). SpringerMaterials (https://materials.springer.com/isp/crystallographic/docs/sd_1012215).