AFLOW Prototype: AB2_hP9_180_c_i-001
This structure originally had the label AB2_hP9_180_d_j. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/3K6M
or
https://aflow.org/p/AB2_hP9_180_c_i-001
or
PDF Version
Prototype | CrSi$_{2}$ |
AFLOW prototype label | AB2_hP9_180_c_i-001 |
Strukturbericht designation | $C40$ |
ICSD | 161434 |
Pearson symbol | hP9 |
Space group number | 180 |
Space group symbol | $P6_222$ |
AFLOW prototype command |
aflow --proto=AB2_hP9_180_c_i-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}$ |
HfSn$_{2}$, MoSi$_{2}$, NbGe$_{2}$, TaGe$_{2}$, TaSi$_{2}$, VGe$_{2}$, VSi$_{2}$, WSi$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ | (3c) | Cr I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (3c) | Cr I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (3c) | Cr I |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}$ | = | $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ | (6i) | Si I |
$\mathbf{B_{5}}$ | = | $- 2 x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (6i) | Si I |
$\mathbf{B_{6}}$ | = | $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (6i) | Si I |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{1}- 2 x_{2} \, \mathbf{a}_{2}$ | = | $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ | (6i) | Si I |
$\mathbf{B_{8}}$ | = | $2 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (6i) | Si I |
$\mathbf{B_{9}}$ | = | $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (6i) | Si I |