Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_hP9_180_c_i-001

This structure originally had the label AB2_hP9_180_d_j. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/3K6M
or https://aflow.org/p/AB2_hP9_180_c_i-001
or PDF Version

CrSi$_{2}$ ($C40$) Structure: AB2_hP9_180_c_i-001

Picture of Structure; Click for Big Picture
Prototype CrSi$_{2}$
AFLOW prototype label AB2_hP9_180_c_i-001
Strukturbericht designation $C40$
ICSD 161434
Pearson symbol hP9
Space group number 180
Space group symbol $P6_222$
AFLOW prototype command aflow --proto=AB2_hP9_180_c_i-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}$

Other compounds with this structure

HfSn$_{2}$,  MoSi$_{2}$,  NbGe$_{2}$,  TaGe$_{2}$,  TaSi$_{2}$,  VGe$_{2}$,  VSi$_{2}$,  WSi$_{2}$


  • This compound can also be found in the enantiomorphic space group $P6_{4}22$ #181.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3c) Cr I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (3c) Cr I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3c) Cr I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}$ = $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (6i) Si I
$\mathbf{B_{5}}$ = $- 2 x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (6i) Si I
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (6i) Si I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}- 2 x_{2} \, \mathbf{a}_{2}$ = $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (6i) Si I
$\mathbf{B_{8}}$ = $2 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (6i) Si I
$\mathbf{B_{9}}$ = $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (6i) Si I

References

  • T. Dasgupta, J. Etourneau, B. Chevalier, S. F. Matar, and A. M. Umarji, Structural, thermal, and electrical properties of CrSi$_2$, J. Appl. Phys. 103, 113516 (2008), doi:10.1063/1.2917347.

Prototype Generator

aflow --proto=AB2_hP9_180_c_i --params=$a,c/a,x_{2}$

Species:

Running:

Output: