Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_mC12_12_i_aci-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/6TPG
or https://aflow.org/p/AB2_mC12_12_i_aci-001
or PDF Version

RuU$_{2}$ Structure: AB2_mC12_12_i_aci-001

Picture of Structure; Click for Big Picture
Prototype RuU$_{2}$
AFLOW prototype label AB2_mC12_12_i_aci-001
ICSD none
Pearson symbol mC12
Space group number 12
Space group symbol $C2/m$
AFLOW prototype command aflow --proto=AB2_mC12_12_i_aci-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}$

  • (Berndt, 1961) gives the lattice parameters for the unit cell of RuU$_{2}$, but only gives approximate positions for the atoms, and states that the space group is either $P2/m$ #10 or $P2_{1}/m$ #11.
  • We follow Villars and assume that atoms are evenly spaced as shown in Berndt's Figure 2, in which case the space group becomes $C2/m$ #12. To our knowledge there has been no further refinement of this structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) U I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (2c) U II
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Ru I
$\mathbf{B_{4}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Ru I
$\mathbf{B_{5}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) U III
$\mathbf{B_{6}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) U III

References

Found in

  • P. Villars, ed., PAULING FILE in: Inorganic Solid Phases (online database) (Springer Materials, Heidelberg, 2016). Cs$_4$Sb$_2$ (Cs$_2$Sb) Crystal Structure.

Prototype Generator

aflow --proto=AB2_mC12_12_i_aci --params=$a,b/a,c/a,\beta,x_{3},z_{3},x_{4},z_{4}$

Species:

Running:

Output: