Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_oC24_41_2a_2b-001

This structure originally had the label AB2_oC24_41_2a_2b. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/BVS7
or https://aflow.org/p/AB2_oC24_41_2a_2b-001
or PDF Version

PdSn$_{2}$ ($C_{e}$) Structure: AB2_oC24_41_2a_2b-001

Picture of Structure; Click for Big Picture
Prototype PdSn$_{2}$
AFLOW prototype label AB2_oC24_41_2a_2b-001
Strukturbericht designation $C_{e}$
ICSD 105684
Pearson symbol oC24
Space group number 41
Space group symbol $Aea2$
AFLOW prototype command aflow --proto=AB2_oC24_41_2a_2b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

CoGe$_{2}$,  GaGe$_{3}$Ni$_{2}$,  RhSn$_{2}$


  • PdSn$_{2}$ can also be found in the tetragonal $\alpha$–PdSn$_{2}$ structure.
  • In fact, AFLOW will place PdSn$_{2}$ in that structure unless we lower the tolerance, using
  • aflow --proto=AB2_oC24_41_2a_2b:Pd:Sn --tolerance=0.001 --params=a,b/a,c/a,z$_{1}$,z$_{2}$,x$_{3}$,y$_{3}$,z$_{3}$,x$_{4}$,y$_{4}$,z$_{4}$ .
  • In the $C_{e}$ structure the palladium sites have 89% occupation.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (4a) Pd I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4a) Pd I
$\mathbf{B_{3}}$ = $- z_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (4a) Pd II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4a) Pd II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8b) Sn I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8b) Sn I
$\mathbf{B_{7}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8b) Sn I
$\mathbf{B_{8}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8b) Sn I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8b) Sn II
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8b) Sn II
$\mathbf{B_{11}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8b) Sn II
$\mathbf{B_{12}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8b) Sn II

References

  • K. Schubert and H. Pfisterer, Zur Kristallchemie der B-Metall-reichsten Phasen in Legierungen von Ü"bergangsmetallen der Eisen- und Platintriaden mit Elementen der vierten Nebengruppe, Z. Metallkd. 41, 433–441 (1950).

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn.

Prototype Generator

aflow --proto=AB2_oC24_41_2a_2b --params=$a,b/a,c/a,z_{1},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4}$

Species:

Running:

Output: