Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_oC24_64_d_ef-002

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/QB3A
or https://aflow.org/p/AB2_oC24_64_d_ef-002
or PDF Version

CoGe$_{2}$ Structure: AB2_oC24_64_d_ef-002

Picture of Structure; Click for Big Picture
Prototype CoGe$_{2}$
AFLOW prototype label AB2_oC24_64_d_ef-002
ICSD 52964
Pearson symbol oC24
Space group number 64
Space group symbol $Cmce$
AFLOW prototype command aflow --proto=AB2_oC24_64_d_ef-002
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{2}, \allowbreak y_{3}, \allowbreak z_{3}$

  • The actual stoichiometry is Co$_{7}$Ge$_{16}$, as the Co (8d) sites are 87.5% occupied.
  • (Schubert, 1950) described this compound as being isotypic to PdSn$_{2}$ ($C_{e}$) in space group $Aba2$ #41.
  • (Cenzual, 1991) showed that the given $z$ coordinates for the cobalt atoms were consistent with space group $Cmca$ #64.
  • Although (Schubert, 1950) give the lattice parameters in Ångstroms, (Cenzual, 1991) asserts that they were actually in kX units and converts them to Ångstroms. We use the later values for the lattice parameters.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{x}}$ (8d) Co I
$\mathbf{B_{2}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) Co I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ = $- a x_{1} \,\mathbf{\hat{x}}$ (8d) Co I
$\mathbf{B_{4}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) Co I
$\mathbf{B_{5}}$ = $- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8e) Ge I
$\mathbf{B_{6}}$ = $\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8e) Ge I
$\mathbf{B_{7}}$ = $\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8e) Ge I
$\mathbf{B_{8}}$ = $- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8e) Ge I
$\mathbf{B_{9}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8f) Ge II
$\mathbf{B_{10}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Ge II
$\mathbf{B_{11}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Ge II
$\mathbf{B_{12}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8f) Ge II

References

  • K. Schubert and H. Pfisterer, Zur Kristallchemie der B-Metall-reichsten Phasen in Legierungen von Ü"bergangsmetallen der Eisen- und Platintriaden mit Elementen der vierten Nebengruppe, Zeitschrift für Metallkunde 41, 433–441 (1950).

Found in

  • K. Cenzual, L. M. Gelato, M. Penzo, and E. Parthé, Inorganic structure types with revised space groups. I, Acta Crystallogr. Sect. B 47, 433–439 (1991), doi:10.1107/S0108768191000903.

Prototype Generator

aflow --proto=AB2_oC24_64_d_ef --params=$a,b/a,c/a,x_{1},y_{2},y_{3},z_{3}$

Species:

Running:

Output: