Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_tI48_142_d_ef-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/FUUU
or https://aflow.org/p/AB2_tI48_142_d_ef-001
or PDF Version

α-PdSn$_{2}$ Structure: AB2_tI48_142_d_ef-001

Picture of Structure; Click for Big Picture
Prototype PdSn$_{2}$
AFLOW prototype label AB2_tI48_142_d_ef-001
ICSD 30235
Pearson symbol tI48
Space group number 142
Space group symbol $I4_1/acd$
AFLOW prototype command aflow --proto=AB2_tI48_142_d_ef-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak x_{3}$

  • This structure is stable up to 600$^\circ$C. (Villars, 2016)
  • PdSn$_{2}$ has also been found in the orthorhombic $C_{e}$ structure.
  • The ICSD entry is from (Hellner, 1956), but we use the refined data from (Künnen, 2000) for this presentation.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (16d) Pd I
$\mathbf{B_{2}}$ = $z_{1} \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) Pd I
$\mathbf{B_{3}}$ = $- \left(z_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (16d) Pd I
$\mathbf{B_{4}}$ = $- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) Pd I
$\mathbf{B_{5}}$ = $- \left(z_{1} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (16d) Pd I
$\mathbf{B_{6}}$ = $- z_{1} \, \mathbf{a}_{1}- \left(z_{1} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) Pd I
$\mathbf{B_{7}}$ = $\left(z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16d) Pd I
$\mathbf{B_{8}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) Pd I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{11}}$ = $\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{12}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}$ (16e) Sn I
$\mathbf{B_{13}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{14}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{15}}$ = $- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{16}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{17}}$ = $\left(x_{3} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{18}}$ = $- \left(x_{3} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{19}}$ = $\left(x_{3} + \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{20}}$ = $- \left(x_{3} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{21}}$ = $- \left(x_{3} - \frac{5}{8}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{7}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{22}}$ = $\left(x_{3} + \frac{5}{8}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{7}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{23}}$ = $- \left(x_{3} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{24}}$ = $\left(x_{3} + \frac{7}{8}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II

References

  • E. Hellner, Flußspat-Misch-Typen, Zeitschrift für Kristallographie 107, 99–123 (1956), doi:10.1524/zkri.1956.107.16.99.
  • P. Villars, ed., PAULING FILE (Springer, 2016), chap. Pd-Sn Binary Phase Diagram 0-100 at.% Sn.

Found in

  • B. Künnen, D. Niepmann, and W. Jeitschko, Structure refinements and some properties of the transition metal stannides Os$_{3}$Sn$_{7}$, Ir$_{5}$Sn$_{7}$, Ni$_{0.402(4)}$Pd$_{0.598}$Sn$_{4}$, $\alpha$-PdSn$_{2}$ and PtSn$_{4}$, J. Alloys Compd. 309, 1–9 (2000), doi:10.1016/S0925-8388(00)01042-2.

Prototype Generator

aflow --proto=AB2_tI48_142_d_ef --params=$a,c/a,z_{1},x_{2},x_{3}$

Species:

Running:

Output: