Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_tP12_115_j_egi-001

This structure originally had the label AB2_tP12_115_j_egi. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/RJ86
or https://aflow.org/p/AB2_tP12_115_j_egi-001
or PDF Version

Orange (averaged) HgI$_{2}$ Structure: AB2_tP12_115_j_egi-001

Picture of Structure; Click for Big Picture
Prototype HgI$_{2}$
AFLOW prototype label AB2_tP12_115_j_egi-001
ICSD none
Pearson symbol tP12
Space group number 115
Space group symbol $P\overline{4}m2$
AFLOW prototype command aflow --proto=AB2_tP12_115_j_egi-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak z_{4}$

  • HgI$_{2}$ can be found in a variety of forms (Gumiński, 1997):
    • The ground state, coccinite, also known as red or $\alpha$–HgI$_{2}$ and given the Strukturbericht designation $C13$. It is stable up to 135$^\circ$C.
    • At higher temperatures this transforms into yellow or $\beta$–HgI$_{2}$ in the HgBr$_{2}$ ($C24$) structure. This is stable up to the melting point at 258$^\circ$C.
    • (Schwarzenbach, 1969) studied the metastable orange HgI$_{2}$ body-centered tetragonal ($I4_{1}/amd$ #141) phase. This structure was refined by (Hostettler, 2002).
    • (Hostettler, 2002) also found a second orange HgI$_{2}$ phase in a simple tetragonal ($P4_{2}/nmc$ #137) cell.
    • The last two structures differ by stacking order. (Hostettler, 2002) used them to produce an averaged orange HgI$_{2}$ structure (this structure), space group $P\overline{4}m2$ #115.
  • This structure is an average of the Orange I and Orange II structures. The averaging procedure places the iodine I atoms only 0.36Å apart, so this is not a physical structure. We retain it as an example of a structure in space group $P\overline{4}m2$ #115.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2e) I I
$\mathbf{B_{2}}$ = $- z_{1} \, \mathbf{a}_{3}$ = $- c z_{1} \,\mathbf{\hat{z}}$ (2e) I I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2g) I II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{2} \,\mathbf{\hat{z}}$ (2g) I II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4i) I III
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4i) I III
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4i) I III
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4i) I III
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ (4j) Hg I
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ (4j) Hg I
$\mathbf{B_{11}}$ = $- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4j) Hg I
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4j) Hg I

References

  • M. Hostettler, H. Birkedal, and D. Schwarzenbach, The structure of orange HgI$_{2}$. I. Polytypic layer structure, Acta Crystallogr. Sect. B 58, 903–913 (2002), doi:10.1107/S010876810201618X.
  • D. Schwarzenbach, The crystal structure and one-dimensional disorder of the orange modification of HgI$_{2}$, Z. Kristallogr. 128, 97–114 (1969), doi:10.1524/zkri.1969.128.1-2.97.
  • D. Schwarzenbach, H. Birkedal, M. Hostettler, and P. Fischer, Neutron diffraction investigation of the temperature dependence of crystal structure and thermal motions of red HgI$_{2}$, Acta Crystallogr. Sect. B 63, 826–835 (2007), doi:10.1107/S0108768107043327.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=AB2_tP12_115_j_egi --params=$a,c/a,z_{1},z_{2},x_{3},x_{4},z_{4}$

Species:

Running:

Output: