AFLOW Prototype: AB3C6D12_cF88_202_a_bc_e_h-001
This structure originally had the label AB3C6D12_cF88_202_a_bc_e_h. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/G8R0
or
https://aflow.org/p/AB3C6D12_cF88_202_a_bc_e_h-001
or
PDF Version
Prototype | CoK$_{3}$N$_{6}$O$_{12}$ |
AFLOW prototype label | AB3C6D12_cF88_202_a_bc_e_h-001 |
Strukturbericht designation | $J2_{4}$ |
ICSD | 26746 |
Pearson symbol | cF88 |
Space group number | 202 |
Space group symbol | $Fm\overline{3}$ |
AFLOW prototype command |
aflow --proto=AB3C6D12_cF88_202_a_bc_e_h-001
--params=$a, \allowbreak x_{4}, \allowbreak y_{5}, \allowbreak z_{5}$ |
(NH$_{4}$)$_{2}$AgBi(NO$_{2}$)$_{6}$, (NH$_{4}$)$_{2}$LiBi(NO$_{2}$)$_{6}$, (NH$_{4}$)$_{2}$NaBi(NO$_{2}$)$_{6}$, (NH$_{4}$)$_{2}$NaCo(NO$_{2}$)$_{6}$, (NH$_{4}$)$_{2}$NaRh(NO$_{2}$)$_{6}$, (NH$_{4}$)$_{3}$Co(NO$_{2}$)$_{6}$, Cs$_{2}$AgBi(NO$_{2}$)$_{6}$, Cs$_{2}$LiBi(NO$_{2}$)$_{6}$, Cs$_{2}$NaBi(NO$_{2}$)$_{6}$, Cs$_{3}$Bi(NO$_{2}$)$_{6}$, K$_{2}$LiBi(NO$_{2}$)$_{6}$, K$_{2}$NaBi(NO$_{2}$)$_{6}$, K$_{2}$NaCo(NO$_{2}$)$_{6}$, K$_{2}$PbCu(NO$_{2}$)$_{6}$, K$_{3}$Ca(NO$_{2}$)$_{6}$, Rb$_{2}$AgBi(NO$_{2}$)$_{6}$, Rb$_{2}$NaBi(NO$_{2}$)$_{6}$, Tl$_{2}$AgBi(NO$_{2}$)$_{6}$, Tl$_{2}$LiBi(NO$_{2}$)$_{6}$, Tl$_{2}$NaBi(NO$_{2}$)$_{6}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Co I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (4b) | K I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | K II |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ | (8c) | K II |
$\mathbf{B_{5}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}$ | (24e) | N I |
$\mathbf{B_{6}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}$ | (24e) | N I |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{y}}$ | (24e) | N I |
$\mathbf{B_{8}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{y}}$ | (24e) | N I |
$\mathbf{B_{9}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{z}}$ | (24e) | N I |
$\mathbf{B_{10}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{z}}$ | (24e) | N I |
$\mathbf{B_{11}}$ | = | $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ | (48h) | O I |
$\mathbf{B_{12}}$ | = | $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ | (48h) | O I |
$\mathbf{B_{13}}$ | = | $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ | (48h) | O I |
$\mathbf{B_{14}}$ | = | $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ | (48h) | O I |
$\mathbf{B_{15}}$ | = | $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a z_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ | (48h) | O I |
$\mathbf{B_{16}}$ | = | $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $a z_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ | (48h) | O I |
$\mathbf{B_{17}}$ | = | $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a z_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ | (48h) | O I |
$\mathbf{B_{18}}$ | = | $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a z_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ | (48h) | O I |
$\mathbf{B_{19}}$ | = | $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}$ | (48h) | O I |
$\mathbf{B_{20}}$ | = | $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}$ | (48h) | O I |
$\mathbf{B_{21}}$ | = | $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}$ | (48h) | O I |
$\mathbf{B_{22}}$ | = | $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}$ | (48h) | O I |