Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3C6D12_cF88_202_a_bc_e_h-001

This structure originally had the label AB3C6D12_cF88_202_a_bc_e_h. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/G8R0
or https://aflow.org/p/AB3C6D12_cF88_202_a_bc_e_h-001
or PDF Version

K$_{3}$Co(NO$_{2}$)$_{6}$ ($J2_{4}$) Structure: AB3C6D12_cF88_202_a_bc_e_h-001

Picture of Structure; Click for Big Picture
Prototype CoK$_{3}$N$_{6}$O$_{12}$
AFLOW prototype label AB3C6D12_cF88_202_a_bc_e_h-001
Strukturbericht designation $J2_{4}$
ICSD 26746
Pearson symbol cF88
Space group number 202
Space group symbol $Fm\overline{3}$
AFLOW prototype command aflow --proto=AB3C6D12_cF88_202_a_bc_e_h-001
--params=$a, \allowbreak x_{4}, \allowbreak y_{5}, \allowbreak z_{5}$

Other compounds with this structure

(NH$_{4}$)$_{2}$AgBi(NO$_{2}$)$_{6}$,  (NH$_{4}$)$_{2}$LiBi(NO$_{2}$)$_{6}$,  (NH$_{4}$)$_{2}$NaBi(NO$_{2}$)$_{6}$,  (NH$_{4}$)$_{2}$NaCo(NO$_{2}$)$_{6}$,  (NH$_{4}$)$_{2}$NaRh(NO$_{2}$)$_{6}$,  (NH$_{4}$)$_{3}$Co(NO$_{2}$)$_{6}$,  Cs$_{2}$AgBi(NO$_{2}$)$_{6}$,  Cs$_{2}$LiBi(NO$_{2}$)$_{6}$,  Cs$_{2}$NaBi(NO$_{2}$)$_{6}$,  Cs$_{3}$Bi(NO$_{2}$)$_{6}$,  K$_{2}$LiBi(NO$_{2}$)$_{6}$,  K$_{2}$NaBi(NO$_{2}$)$_{6}$,  K$_{2}$NaCo(NO$_{2}$)$_{6}$,  K$_{2}$PbCu(NO$_{2}$)$_{6}$,  K$_{3}$Ca(NO$_{2}$)$_{6}$,  Rb$_{2}$AgBi(NO$_{2}$)$_{6}$,  Rb$_{2}$NaBi(NO$_{2}$)$_{6}$,  Tl$_{2}$AgBi(NO$_{2}$)$_{6}$,  Tl$_{2}$LiBi(NO$_{2}$)$_{6}$,  Tl$_{2}$NaBi(NO$_{2}$)$_{6}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Co I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) K I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) K II
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8c) K II
$\mathbf{B_{5}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}$ (24e) N I
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (24e) N I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{y}}$ (24e) N I
$\mathbf{B_{8}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{y}}$ (24e) N I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{z}}$ (24e) N I
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{z}}$ (24e) N I
$\mathbf{B_{11}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (48h) O I
$\mathbf{B_{12}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (48h) O I
$\mathbf{B_{13}}$ = $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (48h) O I
$\mathbf{B_{14}}$ = $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (48h) O I
$\mathbf{B_{15}}$ = $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (48h) O I
$\mathbf{B_{16}}$ = $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (48h) O I
$\mathbf{B_{17}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (48h) O I
$\mathbf{B_{18}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (48h) O I
$\mathbf{B_{19}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}$ (48h) O I
$\mathbf{B_{20}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}$ (48h) O I
$\mathbf{B_{21}}$ = $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}$ (48h) O I
$\mathbf{B_{22}}$ = $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}$ (48h) O I

References

Found in

  • C. Gottfried, ed., Strukturbericht Band IV 1936 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1938).

Prototype Generator

aflow --proto=AB3C6D12_cF88_202_a_bc_e_h --params=$a,x_{4},y_{5},z_{5}$

Species:

Running:

Output: