AFLOW Prototype: AB3C8_tI24_121_a_bd_2i-001
This structure originally had the label AB3C8_tI24_121_a_bd_2i. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/FR9M
or
https://aflow.org/p/AB3C8_tI24_121_a_bd_2i-001
or
PDF Version
Prototype | CrK$_{3}$O$_{8}$ |
AFLOW prototype label | AB3C8_tI24_121_a_bd_2i-001 |
ICSD | 9356 |
Pearson symbol | tI24 |
Space group number | 121 |
Space group symbol | $I\overline{4}2m$ |
AFLOW prototype command |
aflow --proto=AB3C8_tI24_121_a_bd_2i-001
--params=$a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}$ |
Zr$_{3}$GeO$_{8}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Cr I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2b) | K I |
$\mathbf{B_{3}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | K II |
$\mathbf{B_{4}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | K II |
$\mathbf{B_{5}}$ | = | $\left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+2 x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8i) | O I |
$\mathbf{B_{6}}$ | = | $- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- 2 x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8i) | O I |
$\mathbf{B_{7}}$ | = | $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8i) | O I |
$\mathbf{B_{8}}$ | = | $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8i) | O I |
$\mathbf{B_{9}}$ | = | $\left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+2 x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8i) | O II |
$\mathbf{B_{10}}$ | = | $- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- 2 x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8i) | O II |
$\mathbf{B_{11}}$ | = | $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (8i) | O II |
$\mathbf{B_{12}}$ | = | $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (8i) | O II |