Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3C_tP10_129_c_ce_a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/YXBN
or https://aflow.org/p/AB3C_tP10_129_c_ce_a-001
or PDF Version

SrPt$_{3}$P Structure: AB3C_tP10_129_c_ce_a-001

Picture of Structure; Click for Big Picture
Prototype PPt$_{3}$Sr
AFLOW prototype label AB3C_tP10_129_c_ce_a-001
ICSD none
Pearson symbol tP10
Space group number 129
Space group symbol $P4/nmm$
AFLOW prototype command aflow --proto=AB3C_tP10_129_c_ce_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}$

Other compounds with this structure

CaPt$_{3}$P,  LaPt$_{3}$P,  BaAu$_{3}$Ge


  • We have been unable to find an ICSD or CCDC entry for this compound.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (2a) Sr I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (2a) Sr I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2c) P I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (2c) P I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2c) Pt I
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (2c) Pt I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) Pt II
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) Pt II
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) Pt II
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) Pt II

References

  • T. Takayama, K. Kuwano, D. Hirai, Y. Katsura, A. Yamamoto, and H. Takagi, Strong Coupling Superconductivity at 8.4 K in an Antiperovskite Phosphide SrPt$_{3}$P, Phys. Rev. Lett. 108, 237001 (2012), doi:10.1103/PhysRevLett.108.237001.

Found in

  • H. Huang, L.-C. Hou, and B.-P. Zhao, Theoretical study on the two-band degenerate-gaps superconductors: Application to SrPt$_{3}$P, Prog. Solid State Chem. 528, 90–93 (2016), doi:10.1016/j.physc.2016.07.022.

Prototype Generator

aflow --proto=AB3C_tP10_129_c_ce_a --params=$a,c/a,z_{2},z_{3}$

Species:

Running:

Output: