Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3C_tP5_99_b_ac_a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/3BZX
or https://aflow.org/p/AB3C_tP5_99_b_ac_a-001
or PDF Version

Room Temperature Tetragonal BaTiO$_{3}$ Structure: AB3C_tP5_99_b_ac_a-001

Picture of Structure; Click for Big Picture
Prototype BaO$_{3}$Ti
AFLOW prototype label AB3C_tP5_99_b_ac_a-001
ICSD 130020
Pearson symbol tP5
Space group number 99
Space group symbol $P4mm$
AFLOW prototype command aflow --proto=AB3C_tP5_99_b_ac_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}$

  • The perovskite BaTiO$_{3}$ undergoes a variety of temperature driven phase transitions. (Shirane, 1957)
  • The first three structures are ferroelectric:
    • Below 193K the structure is rhombohedral.
    • Between 193K and 278K the structure is orthorhombic.
    • Between 278K and 393K the structure is tetragonal. This room-temperature form of the material is describe here.
    • Above 393K the compound is a cubic perovskite ($E2_{1}$).
  • Hexagonal BaTiO$_{3}$ can be stabilized by alloying the titanium sites with other transition metals. (Dickson, 1961) The pure structure has been grown at 1853K and cooled to room temperature. (Akimo, 1994)
  • This structure has the same space group and occupied Wyckoff positions as the tetragonal PZT structure, but the displacements from the cubic perovskite structure are different, so we give this structure its own AFLOW designation.
  • Presumably the data for this structure was taken at room temperature.
  • Space group $P4/mm$ #99 does not specify the origin of the $z$-axis. We set it by taking $z_{3} = 0$, putting the barium atom at the origin.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (1a) O I
$\mathbf{B_{2}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (1a) Ti I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (1b) Ba I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ (2c) O II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2c) O II

References

  • G. Shirane, H. Danner, and R. Pepinsky, Neutron Diffraction Study of Orthorhombic BaTiO$_{3}$, Phys. Rev. 105, 856–860 (1957), doi:10.1103/PhysRev.105.856.
  • J. G. Dickson, L. Katz, and R. Ward, Compounds with the Hexagonal Barium Titanate Structure, J. Am. Chem. Soc. 83, 3026–3029 (1961), doi:10.1021/ja01475a012.
  • A. W. Hewat, Structure of rhombohedral ferroelectric barium titanate, Ferroelectrics 6, 215–218 (1974), doi:10.1080/00150197408243970.
  • J. Akimoto, Y. Gotoh, and Y. Oosawa, Refinement of Hexagonal BaTiO$_{3}$, Acta Crystallogr. Sect. C 50, 160–161 (1994), doi:10.1107/S0108270193008637.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=AB3C_tP5_99_b_ac_a --params=$a,c/a,z_{1},z_{2},z_{3},z_{4}$

Species:

Running:

Output: