Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3_oC16_38_ab_3a3b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/L5S8
or https://aflow.org/p/AB3_oC16_38_ab_3a3b-001
or PDF Version

GdSn$_{3}$ Structure: AB3_oC16_38_ab_3a3b-001

Picture of Structure; Click for Big Picture
Prototype GdSn$_{3}$
AFLOW prototype label AB3_oC16_38_ab_3a3b-001
ICSD 104154
Pearson symbol oC16
Space group number 38
Space group symbol $Amm2$
AFLOW prototype command aflow --proto=AB3_oC16_38_ab_3a3b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}$

Other compounds with this structure

DySn$_{3}$,  HoSn$_{3}$,  ReSn$_{3}$,  TbSn$_{3}$,  TmSn$_{3}$,  YSn$_{3}$


  • (Palenzona, 1993) identify this as the low-temperature structure of GdSn$_{3}$, transforming into the CuAu$_{3}$ ($L1_{2}$) structure at high temperatures.
  • (Palenzona, 1993) do not provide the coordinates for this structure within the paper, however ICSD entry 104154 gives the structure and lists this paper as the source.
  • Space group $Amm2$ #38 does not specify the origin of the $z$-axis. Here it is fixed by setting $z_{2} = 0$ for the Sn-I atom.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) Gd I
$\mathbf{B_{2}}$ = $- z_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2a) Sn I
$\mathbf{B_{3}}$ = $- z_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (2a) Sn II
$\mathbf{B_{4}}$ = $- z_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (2a) Sn III
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (2b) Gd II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ (2b) Sn IV
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ (2b) Sn V
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ (2b) Sn VI

References

  • A. Palenzona and P. Manfrinetti, The tin-rich side of the rare earth-tin systems (R = Gd, Tb, Dy, Ho, Er, Tm, Lu and Y), J. Alloys Compd. 201, 43–47 (1993), doi:10.1016/0925-8388(93)90859-L.
  • F. Karlsruhe and NIST, Inorganic Crystal Structure Database, http://icsd.fiz-karlsruhe.de/.

Prototype Generator

aflow --proto=AB3_oC16_38_ab_3a3b --params=$a,b/a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},z_{6},z_{7},z_{8}$

Species:

Running:

Output: