AFLOW Prototype: AB3_oC16_38_ab_3a3b-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/L5S8
or
https://aflow.org/p/AB3_oC16_38_ab_3a3b-001
or
PDF Version
Prototype | GdSn$_{3}$ |
AFLOW prototype label | AB3_oC16_38_ab_3a3b-001 |
ICSD | 104154 |
Pearson symbol | oC16 |
Space group number | 38 |
Space group symbol | $Amm2$ |
AFLOW prototype command |
aflow --proto=AB3_oC16_38_ab_3a3b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}$ |
DySn$_{3}$, HoSn$_{3}$, ReSn$_{3}$, TbSn$_{3}$, TmSn$_{3}$, YSn$_{3}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (2a) | Gd I |
$\mathbf{B_{2}}$ | = | $- z_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (2a) | Sn I |
$\mathbf{B_{3}}$ | = | $- z_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (2a) | Sn II |
$\mathbf{B_{4}}$ | = | $- z_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (2a) | Sn III |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ | (2b) | Gd II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ | (2b) | Sn IV |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ | (2b) | Sn V |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ | (2b) | Sn VI |