Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3_tI32_121_f_g2i-001

This structure originally had the label AB3_tI32_121_g_f2i. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/QHX2
or https://aflow.org/p/AB3_tI32_121_f_g2i-001
or PDF Version

α-V$_{3}$S Structure: AB3_tI32_121_f_g2i-001

Picture of Structure; Click for Big Picture
Prototype SV$_{3}$
AFLOW prototype label AB3_tI32_121_f_g2i-001
ICSD 26515
Pearson symbol tI32
Space group number 121
Space group symbol $I\overline{4}2m$
AFLOW prototype command aflow --proto=AB3_tI32_121_f_g2i-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}$

Other compounds with this structure

Mo$_{3}$P,  Zr$_{3}$Ir


  • $\alpha$–V$_{3}$S is stable above 950°C, but metastable at 25°C, where this data was taken.
  • Below 825°C the system transforms to the $\beta$–V$_{3}$S structure.
  • We have shifted the origin by 1/2 c $\hat{z}$ from that used by (Pedersen, 1959).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}$ (8f) S I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}$ (8f) S I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{y}}$ (8f) S I
$\mathbf{B_{4}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{y}}$ (8f) S I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8g) V I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8g) V I
$\mathbf{B_{7}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8g) V I
$\mathbf{B_{8}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8g) V I
$\mathbf{B_{9}}$ = $\left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+2 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8i) V II
$\mathbf{B_{10}}$ = $- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- 2 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8i) V II
$\mathbf{B_{11}}$ = $- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8i) V II
$\mathbf{B_{12}}$ = $\left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8i) V II
$\mathbf{B_{13}}$ = $\left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+2 x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8i) V III
$\mathbf{B_{14}}$ = $- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- 2 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8i) V III
$\mathbf{B_{15}}$ = $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8i) V III
$\mathbf{B_{16}}$ = $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8i) V III

References

  • B. Pedersen and F. Grønvold, The Crystal Structures of α-V$_{3}$S and β-V$_{3}$S, Acta Cryst. 12, 1022–1027 (1959), doi:10.1107/S0365110X59002869.

Prototype Generator

aflow --proto=AB3_tI32_121_f_g2i --params=$a,c/a,x_{1},x_{2},x_{3},z_{3},x_{4},z_{4}$

Species:

Running:

Output: