Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3_tP40_127_di_cg2ij-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/46QF
or https://aflow.org/p/AB3_tP40_127_di_cg2ij-001
or PDF Version

κ-AlF$_{3}$ Structure: AB3_tP40_127_di_cg2ij-001

Picture of Structure; Click for Big Picture
Prototype AlF$_{3}$
AFLOW prototype label AB3_tP40_127_di_cg2ij-001
ICSD 79816
Pearson symbol tP40
Space group number 127
Space group symbol $P4/mbm$
AFLOW prototype command aflow --proto=AB3_tP40_127_di_cg2ij-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak x_{7}, \allowbreak y_{7}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2c) F I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2c) F I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (2d) Al I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (2d) Al I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4g) F II
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4g) F II
$\mathbf{B_{7}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (4g) F II
$\mathbf{B_{8}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (4g) F II
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (8i) Al II
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (8i) Al II
$\mathbf{B_{11}}$ = $- y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (8i) Al II
$\mathbf{B_{12}}$ = $y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (8i) Al II
$\mathbf{B_{13}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) Al II
$\mathbf{B_{14}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) Al II
$\mathbf{B_{15}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) Al II
$\mathbf{B_{16}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) Al II
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}$ (8i) F III
$\mathbf{B_{18}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}$ (8i) F III
$\mathbf{B_{19}}$ = $- y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ = $- a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}$ (8i) F III
$\mathbf{B_{20}}$ = $y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ = $a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}$ (8i) F III
$\mathbf{B_{21}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) F III
$\mathbf{B_{22}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) F III
$\mathbf{B_{23}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) F III
$\mathbf{B_{24}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) F III
$\mathbf{B_{25}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}$ (8i) F IV
$\mathbf{B_{26}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}$ (8i) F IV
$\mathbf{B_{27}}$ = $- y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}$ = $- a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}$ (8i) F IV
$\mathbf{B_{28}}$ = $y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}$ = $a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}$ (8i) F IV
$\mathbf{B_{29}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) F IV
$\mathbf{B_{30}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) F IV
$\mathbf{B_{31}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) F IV
$\mathbf{B_{32}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8i) F IV
$\mathbf{B_{33}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) F V
$\mathbf{B_{34}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) F V
$\mathbf{B_{35}}$ = $- y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) F V
$\mathbf{B_{36}}$ = $y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) F V
$\mathbf{B_{37}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) F V
$\mathbf{B_{38}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) F V
$\mathbf{B_{39}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) F V
$\mathbf{B_{40}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) F V

References

  • N. Herron, D. L. Thorn, R. L. Harlow, G. A. Jones, J. B. Parise, J. A. Fernandez-Baca, and T. Vogt, Preparation and Structural Characterization of Two New Phases of Aluminum Trifluoride, Chem. Mater. 7, 75–83 (1995), doi:10.1021/cm00049a013.
  • C. R. Morelock, J. C. Hancock, and A. P. Wilkinson, Thermal expansion and phase transitions of α-AlF$_{3}$, J. Solid State Chem. 219, 143–147 (2014), doi:10.1016/j.jssc.2014.07.031.

Found in

  • A. L. Bail and F. Calvayrac, Hypothetical AlF$_{3}$ crystal structures, J. Solid State Chem. 179, 3159–3166 (2006), doi:10.1016/j.jssc.2006.06.010.

Prototype Generator

aflow --proto=AB3_tP40_127_di_cg2ij --params=$a,c/a,x_{3},x_{4},y_{4},x_{5},y_{5},x_{6},y_{6},x_{7},y_{7}$

Species:

Running:

Output: