AFLOW Prototype: AB3_tP64_129_2cdi_2cfhijk-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/HQ3Z
or
https://aflow.org/p/AB3_tP64_129_2cdi_2cfhijk-001
or
PDF Version
Prototype | AlF$_{3}$ |
AFLOW prototype label | AB3_tP64_129_2cdi_2cfhijk-001 |
ICSD | 79814 |
Pearson symbol | tP64 |
Space group number | 129 |
Space group symbol | $P4/nmm$ |
AFLOW prototype command |
aflow --proto=AB3_tP64_129_2cdi_2cfhijk-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (2c) | Al I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ | (2c) | Al I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2c) | Al II |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (2c) | Al II |
$\mathbf{B_{5}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (2c) | F I |
$\mathbf{B_{6}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (2c) | F I |
$\mathbf{B_{7}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (2c) | F II |
$\mathbf{B_{8}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (2c) | F II |
$\mathbf{B_{9}}$ | = | $0$ | = | $0$ | (4d) | Al III |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (4d) | Al III |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (4d) | Al III |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (4d) | Al III |
$\mathbf{B_{13}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (4f) | F III |
$\mathbf{B_{14}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (4f) | F III |
$\mathbf{B_{15}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (4f) | F III |
$\mathbf{B_{16}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (4f) | F III |
$\mathbf{B_{17}}$ | = | $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | F IV |
$\mathbf{B_{18}}$ | = | $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | F IV |
$\mathbf{B_{19}}$ | = | $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | F IV |
$\mathbf{B_{20}}$ | = | $- x_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | F IV |
$\mathbf{B_{21}}$ | = | $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | F IV |
$\mathbf{B_{22}}$ | = | $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | F IV |
$\mathbf{B_{23}}$ | = | $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | F IV |
$\mathbf{B_{24}}$ | = | $x_{7} \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | F IV |
$\mathbf{B_{25}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8i) | Al IV |
$\mathbf{B_{26}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8i) | Al IV |
$\mathbf{B_{27}}$ | = | $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8i) | Al IV |
$\mathbf{B_{28}}$ | = | $y_{8} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $a y_{8} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8i) | Al IV |
$\mathbf{B_{29}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (8i) | Al IV |
$\mathbf{B_{30}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (8i) | Al IV |
$\mathbf{B_{31}}$ | = | $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (8i) | Al IV |
$\mathbf{B_{32}}$ | = | $- y_{8} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- a y_{8} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (8i) | Al IV |
$\mathbf{B_{33}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (8i) | F V |
$\mathbf{B_{34}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (8i) | F V |
$\mathbf{B_{35}}$ | = | $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (8i) | F V |
$\mathbf{B_{36}}$ | = | $y_{9} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $a y_{9} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (8i) | F V |
$\mathbf{B_{37}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (8i) | F V |
$\mathbf{B_{38}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (8i) | F V |
$\mathbf{B_{39}}$ | = | $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (8i) | F V |
$\mathbf{B_{40}}$ | = | $- y_{9} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- a y_{9} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (8i) | F V |
$\mathbf{B_{41}}$ | = | $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (8j) | F VI |
$\mathbf{B_{42}}$ | = | $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (8j) | F VI |
$\mathbf{B_{43}}$ | = | $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (8j) | F VI |
$\mathbf{B_{44}}$ | = | $x_{10} \, \mathbf{a}_{1}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (8j) | F VI |
$\mathbf{B_{45}}$ | = | $- x_{10} \, \mathbf{a}_{1}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (8j) | F VI |
$\mathbf{B_{46}}$ | = | $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (8j) | F VI |
$\mathbf{B_{47}}$ | = | $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (8j) | F VI |
$\mathbf{B_{48}}$ | = | $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (8j) | F VI |
$\mathbf{B_{49}}$ | = | $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{50}}$ | = | $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{51}}$ | = | $- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{52}}$ | = | $y_{11} \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $a y_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{53}}$ | = | $- x_{11} \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{54}}$ | = | $\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{55}}$ | = | $\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{56}}$ | = | $- y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{57}}$ | = | $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{58}}$ | = | $\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{59}}$ | = | $\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{60}}$ | = | $- y_{11} \, \mathbf{a}_{1}+\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- a y_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{61}}$ | = | $x_{11} \, \mathbf{a}_{1}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{62}}$ | = | $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{63}}$ | = | $- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |
$\mathbf{B_{64}}$ | = | $y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (16k) | F VII |