Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3_tP64_85_2ceg_2cf5g-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/U4T0
or https://aflow.org/p/AB3_tP64_85_2ceg_2cf5g-001
or PDF Version

Provisional δ-Alane (AlH$_{3}$) Structure: AB3_tP64_85_2ceg_2cf5g-001

Picture of Structure; Click for Big Picture
Prototype AlH$_{3}$
AFLOW prototype label AB3_tP64_85_2ceg_2cf5g-001
Mineral name δ-alane
ICSD none
Pearson symbol tP64
Space group number 85
Space group symbol $P4/n$
AFLOW prototype command aflow --proto=AB3_tP64_85_2ceg_2cf5g-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}$

  • Alane (AlH$_{3}$ or AlD$_{3}$) comes a variety of polymorphs (Brower, 1976) which can be accessed by using different preparation methods. We will add to this list as we obtain data on more of the crystal structures. Currently we have
  • We have not found experimental data for $\delta$-alane, and hence no ICSD entry. (Sun, 2009) used first-principles calculations to find the current structure, stating that x-ray powder-diffraction patterns [give] simulated main-peak positions for AlH$_{3}$ [in] good agreement with experimental (Bower, 1976) $\delta$–AlH$_{3}$. Since (Bower, 1976) did not extract a crystal structure from their data and we do not have any other confirmation that this is the correct structure we will list this as a provisional structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (2c) Al I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (2c) Al I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2c) Al II
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (2c) Al II
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2c) H I
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (2c) H I
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2c) H II
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2c) H II
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) Al III
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) Al III
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) Al III
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) Al III
$\mathbf{B_{13}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4f) H III
$\mathbf{B_{14}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4f) H III
$\mathbf{B_{15}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (4f) H III
$\mathbf{B_{16}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (4f) H III
$\mathbf{B_{17}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8g) Al IV
$\mathbf{B_{18}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8g) Al IV
$\mathbf{B_{19}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8g) Al IV
$\mathbf{B_{20}}$ = $y_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8g) Al IV
$\mathbf{B_{21}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8g) Al IV
$\mathbf{B_{22}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8g) Al IV
$\mathbf{B_{23}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8g) Al IV
$\mathbf{B_{24}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8g) Al IV
$\mathbf{B_{25}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8g) H IV
$\mathbf{B_{26}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8g) H IV
$\mathbf{B_{27}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8g) H IV
$\mathbf{B_{28}}$ = $y_{8} \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8g) H IV
$\mathbf{B_{29}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8g) H IV
$\mathbf{B_{30}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8g) H IV
$\mathbf{B_{31}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8g) H IV
$\mathbf{B_{32}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8g) H IV
$\mathbf{B_{33}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8g) H V
$\mathbf{B_{34}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8g) H V
$\mathbf{B_{35}}$ = $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8g) H V
$\mathbf{B_{36}}$ = $y_{9} \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8g) H V
$\mathbf{B_{37}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8g) H V
$\mathbf{B_{38}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8g) H V
$\mathbf{B_{39}}$ = $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8g) H V
$\mathbf{B_{40}}$ = $- y_{9} \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8g) H V
$\mathbf{B_{41}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8g) H VI
$\mathbf{B_{42}}$ = $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8g) H VI
$\mathbf{B_{43}}$ = $- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8g) H VI
$\mathbf{B_{44}}$ = $y_{10} \, \mathbf{a}_{1}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8g) H VI
$\mathbf{B_{45}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8g) H VI
$\mathbf{B_{46}}$ = $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8g) H VI
$\mathbf{B_{47}}$ = $\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8g) H VI
$\mathbf{B_{48}}$ = $- y_{10} \, \mathbf{a}_{1}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8g) H VI
$\mathbf{B_{49}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8g) H VII
$\mathbf{B_{50}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8g) H VII
$\mathbf{B_{51}}$ = $- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8g) H VII
$\mathbf{B_{52}}$ = $y_{11} \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8g) H VII
$\mathbf{B_{53}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8g) H VII
$\mathbf{B_{54}}$ = $\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8g) H VII
$\mathbf{B_{55}}$ = $\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8g) H VII
$\mathbf{B_{56}}$ = $- y_{11} \, \mathbf{a}_{1}+\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8g) H VII
$\mathbf{B_{57}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8g) H VIII
$\mathbf{B_{58}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8g) H VIII
$\mathbf{B_{59}}$ = $- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8g) H VIII
$\mathbf{B_{60}}$ = $y_{12} \, \mathbf{a}_{1}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8g) H VIII
$\mathbf{B_{61}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8g) H VIII
$\mathbf{B_{62}}$ = $\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8g) H VIII
$\mathbf{B_{63}}$ = $\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8g) H VIII
$\mathbf{B_{64}}$ = $- y_{12} \, \mathbf{a}_{1}+\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8g) H VIII

References

  • S. Sun, X. Ke, C. Chen, and I. Tanaka, First-principles prediction of low-energy structures for AlH$_{3}$, Phys. Rev. B 79, 024104 (2009), doi:10.1103/PhysRevB.79.024104.
  • F. M. Brower, N. E. Matzek, P. F. Reigler, H. W. Rinn, C. B. Roberts, D. L. Schmidt, J. A. Snover, and K. Terada, Preparation and properties of aluminum hydride, J. Am. Chem. Soc. 98, 2450–2453 (1976), doi:10.1021/ja00425a011.

Prototype Generator

aflow --proto=AB3_tP64_85_2ceg_2cf5g --params=$a,c/a,z_{1},z_{2},z_{3},z_{4},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12}$

Species:

Running:

Output: