Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4C3_oI32_46_b_2bc_bc-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/77VH
or https://aflow.org/p/AB4C3_oI32_46_b_2bc_bc-001
or PDF Version

Room Temperature AgC$_{4}$N$_{3}$ Structure: AB4C3_oI32_46_b_2bc_bc-001

Picture of Structure; Click for Big Picture
Prototype AgC$_{4}$N$_{3}$
AFLOW prototype label AB4C3_oI32_46_b_2bc_bc-001
ICSD 43823
Pearson symbol oI32
Space group number 46
Space group symbol $Ima2$
AFLOW prototype command aflow --proto=AB4C3_oI32_46_b_2bc_bc-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$

  • This is the room temperature structure of AgC$_{4}$N$_{3}$. Around 100K it undergoes a significatn change in structure which does not change the space group or Wyckoff positions. (Hodgson, 2014). This can be found on the low temperature AgC$_{4}$N$_{3}$ structure page.
  • In chemical literature this is often referred to as Ag(tcm), where tcm is an abbreviation for tricyanomethanide.
  • (Konnert, 2014) swapped the $x$- and $z$-axes compared to the standard setting of space group $Ima2$ #46. We used AFLOW to transform this to the standard orientation.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\left(y_{1} + z_{1}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{1} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4b) Ag I
$\mathbf{B_{2}}$ = $- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{1} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4b) Ag I
$\mathbf{B_{3}}$ = $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4b) C I
$\mathbf{B_{4}}$ = $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4b) C I
$\mathbf{B_{5}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4b) C II
$\mathbf{B_{6}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(z_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4b) C II
$\mathbf{B_{7}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4b) N I
$\mathbf{B_{8}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4b) N I
$\mathbf{B_{9}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8c) C III
$\mathbf{B_{10}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8c) C III
$\mathbf{B_{11}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8c) C III
$\mathbf{B_{12}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8c) C III
$\mathbf{B_{13}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) N II
$\mathbf{B_{14}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) N II
$\mathbf{B_{15}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) N II
$\mathbf{B_{16}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) N II

References

  • J. Konnert and D. Britton, The Crystal Structure of AgC(CN)$_{3}$, Inorg. Chem. 5, 1191–1196 (1966), doi:10.1021/ic50041a026.
  • S. A. Hodgson, J. Adamson, S. J. Hunt, M. J. Cliffe, A. B. Cairns, A. L. Thompson, M. G. Tucker, N. P. Funnell, and A. L. Goodwin, Negative area compressibility in silver(I) tricyanomethanide, Chem. Commun. 50, 5264–5266 (2014), doi:10.1039/C3CC47032F.

Prototype Generator

aflow --proto=AB4C3_oI32_46_b_2bc_bc --params=$a,b/a,c/a,y_{1},z_{1},y_{2},z_{2},y_{3},z_{3},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6}$

Species:

Running:

Output: