AFLOW Prototype: AB4C3_oI32_46_b_2bc_bc-002
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/AS99
or
https://aflow.org/p/AB4C3_oI32_46_b_2bc_bc-002
or
PDF Version
Prototype | AgC$_{4}$N$_{3}$ |
AFLOW prototype label | AB4C3_oI32_46_b_2bc_bc-002 |
CCDC | 961476 |
Pearson symbol | oI32 |
Space group number | 46 |
Space group symbol | $Ima2$ |
AFLOW prototype command |
aflow --proto=AB4C3_oI32_46_b_2bc_bc-002
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\left(y_{1} + z_{1}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{1} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (4b) | Ag I |
$\mathbf{B_{2}}$ | = | $- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{1} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (4b) | Ag I |
$\mathbf{B_{3}}$ | = | $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (4b) | C I |
$\mathbf{B_{4}}$ | = | $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (4b) | C I |
$\mathbf{B_{5}}$ | = | $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (4b) | C II |
$\mathbf{B_{6}}$ | = | $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(z_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (4b) | C II |
$\mathbf{B_{7}}$ | = | $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (4b) | N I |
$\mathbf{B_{8}}$ | = | $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (4b) | N I |
$\mathbf{B_{9}}$ | = | $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8c) | C III |
$\mathbf{B_{10}}$ | = | $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8c) | C III |
$\mathbf{B_{11}}$ | = | $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8c) | C III |
$\mathbf{B_{12}}$ | = | $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8c) | C III |
$\mathbf{B_{13}}$ | = | $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8c) | N II |
$\mathbf{B_{14}}$ | = | $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8c) | N II |
$\mathbf{B_{15}}$ | = | $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8c) | N II |
$\mathbf{B_{16}}$ | = | $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8c) | N II |