Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4C_tP12_127_a_eg_c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/QJN8
or https://aflow.org/p/AB4C_tP12_127_a_eg_c-001
or PDF Version

RbAlF$_{4}$ II Structure: AB4C_tP12_127_a_eg_c-001

Picture of Structure; Click for Big Picture
Prototype AlF$_{4}$Rb
AFLOW prototype label AB4C_tP12_127_a_eg_c-001
ICSD 54121
Pearson symbol tP12
Space group number 127
Space group symbol $P4/mbm$
AFLOW prototype command aflow --proto=AB4C_tP12_127_a_eg_c-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak x_{4}$

  • (Bulou, 1982) identify three phases of RbAlF$_{4}$:
  • The different structures are distinguished by the tilt of the AlF$_{6}$ octahedra.
  • We use Bulou and Nouet's data for RbAlF$_{4}$ II at 293K.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (2a) Al I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2c) Rb I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2c) Rb I
$\mathbf{B_{5}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4e) F I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4e) F I
$\mathbf{B_{7}}$ = $- z_{3} \, \mathbf{a}_{3}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (4e) F I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4e) F I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4g) F II
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4g) F II
$\mathbf{B_{11}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (4g) F II
$\mathbf{B_{12}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (4g) F II

References

  • A. Bulou and J. Nouet, Structural phase transitions in ferroelastic RbAlF$_{4}$. I. DSC, X-ray powder diffraction investigations and neutron powder profile refinement of the structures, J. Phys. C: Solid State Phys. 15, 183–196 (1982), doi:10.1088/0022-3719/15/2/004.

Prototype Generator

aflow --proto=AB4C_tP12_127_a_eg_c --params=$a,c/a,z_{3},x_{4}$

Species:

Running:

Output: