Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4_oC20_68_a_i-001

This structure originally had the label AB4_oC20_68_a_i. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/LGPW
or https://aflow.org/p/AB4_oC20_68_a_i-001
or PDF Version

PdSn$_{4}$ Structure: AB4_oC20_68_a_i-001

Picture of Structure; Click for Big Picture
Prototype PdSn$_{4}$
AFLOW prototype label AB4_oC20_68_a_i-001
ICSD 413280
Pearson symbol oC20
Space group number 68
Space group symbol $Ccce$
AFLOW prototype command aflow --proto=AB4_oC20_68_a_i-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) Pd I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4a) Pd I
$\mathbf{B_{3}}$ = $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (16i) Sn I
$\mathbf{B_{4}}$ = $\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (16i) Sn I
$\mathbf{B_{5}}$ = $- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Sn I
$\mathbf{B_{6}}$ = $\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Sn I
$\mathbf{B_{7}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (16i) Sn I
$\mathbf{B_{8}}$ = $\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (16i) Sn I
$\mathbf{B_{9}}$ = $\left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Sn I
$\mathbf{B_{10}}$ = $- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Sn I

References

  • J. Nylén, F. J. G. Garcıà, B. D. Mosel, R. Pöttgen, and U. Häussermann, Structural relationships, phase stability and bonding of compounds PdSn$_{n}$ (n=2, 3, 4), Solid State Sci. 6, 147–155 (2004), doi:10.1016/j.solidstatesciences.2003.09.011.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=AB4_oC20_68_a_i --params=$a,b/a,c/a,x_{2},y_{2},z_{2}$

Species:

Running:

Output: