AFLOW Prototype: AB4_tP10_124_a_m-001
This structure originally had the label AB4_tP10_124_a_m. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/XFHX
or
https://aflow.org/p/AB4_tP10_124_a_m-001
or
PDF Version
Prototype | NbTe$_{4}$ |
AFLOW prototype label | AB4_tP10_124_a_m-001 |
ICSD | 43282 |
Pearson symbol | tP10 |
Space group number | 124 |
Space group symbol | $P4/mcc$ |
AFLOW prototype command |
aflow --proto=AB4_tP10_124_a_m-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak y_{2}$ |
TaTe$_{4}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}c \,\mathbf{\hat{z}}$ | (2a) | Nb I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}c \,\mathbf{\hat{z}}$ | (2a) | Nb I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}$ | (8m) | Te I |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}$ | (8m) | Te I |
$\mathbf{B_{5}}$ | = | $- y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ | = | $- a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ | (8m) | Te I |
$\mathbf{B_{6}}$ | = | $y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ | (8m) | Te I |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8m) | Te I |
$\mathbf{B_{8}}$ | = | $x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8m) | Te I |
$\mathbf{B_{9}}$ | = | $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8m) | Te I |
$\mathbf{B_{10}}$ | = | $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8m) | Te I |