AFLOW Prototype: AB6C2D_mC40_12_ac_gh4i_j_bd-001
This structure originally had the label AB6C2D_mC40_12_ad_gh4i_j_bc. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/79Y1
or
https://aflow.org/p/AB6C2D_mC40_12_ac_gh4i_j_bd-001
or
PDF Version
Prototype | NiO$_{6}$Sr$_{2}$Te |
AFLOW prototype label | AB6C2D_mC40_12_ac_gh4i_j_bd-001 |
ICSD | 91792 |
Pearson symbol | mC40 |
Space group number | 12 |
Space group symbol | $C2/m$ |
AFLOW prototype command |
aflow --proto=AB6C2D_mC40_12_ac_gh4i_j_bd-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{5}, \allowbreak y_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$ |
Sr$_{2}$NiTeO$_{6}$, Cs$_{2}$RbDy$_{6}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Ni I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (2b) | Te I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ | (2c) | Ni II |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}\left(a + c \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ | (2d) | Te II |
$\mathbf{B_{5}}$ | = | $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ | = | $b y_{5} \,\mathbf{\hat{y}}$ | (4g) | O I |
$\mathbf{B_{6}}$ | = | $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ | = | $- b y_{5} \,\mathbf{\hat{y}}$ | (4g) | O I |
$\mathbf{B_{7}}$ | = | $- y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ | (4h) | O II |
$\mathbf{B_{8}}$ | = | $y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ | (4h) | O II |
$\mathbf{B_{9}}$ | = | $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | O III |
$\mathbf{B_{10}}$ | = | $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | O III |
$\mathbf{B_{11}}$ | = | $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | O IV |
$\mathbf{B_{12}}$ | = | $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | O IV |
$\mathbf{B_{13}}$ | = | $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | O V |
$\mathbf{B_{14}}$ | = | $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | O V |
$\mathbf{B_{15}}$ | = | $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | O VI |
$\mathbf{B_{16}}$ | = | $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | O VI |
$\mathbf{B_{17}}$ | = | $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (8j) | Sr I |
$\mathbf{B_{18}}$ | = | $- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (8j) | Sr I |
$\mathbf{B_{19}}$ | = | $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (8j) | Sr I |
$\mathbf{B_{20}}$ | = | $\left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (8j) | Sr I |