Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB6C2_mC18_12_a_3i_i-004

This structure originally had the label AB6C2_mC18_12_a_3i_i. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/H8PR
or https://aflow.org/p/AB6C2_mC18_12_a_3i_i-004
or PDF Version

Ta$_{2}$PdSe$_{6}$ Structure: AB6C2_mC18_12_a_3i_i-004

Picture of Structure; Click for Big Picture
Prototype PdSe$_{6}$Ta$_{2}$
AFLOW prototype label AB6C2_mC18_12_a_3i_i-004
ICSD 61005
Pearson symbol mC18
Space group number 12
Space group symbol $C2/m$
AFLOW prototype command aflow --proto=AB6C2_mC18_12_a_3i_i-004
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}$

Other compounds with this structure

Nb$_{2}$PdS$_{6}$,  Nb$_{2}$PdSe$_{6}$,  Ta$_{2}$PdS$_{6}$


  • (Keszler, 1985) gave the structure in the $I2/m$ setting of space group #12. We used FINDSYM to change this to the standard $C2/m$ setting. Because of this change our primitive vectors are linear combinations of the original ones, and the lattice has been rotated.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Pd I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Se I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Se I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Se II
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Se II
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Se III
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Se III
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Ta I
$\mathbf{B_{9}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Ta I

References

  • D. A. Keszler, P. J. Squattrito, N. E. Brese, J. A. Ibers, M. Shang, and J. Lu, New layered ternary chalcogenides: tantalum palladium sulfide (Ta$_{2}$PdS$_{6}$), tantalum palladium selenide (Ta$_{2}$PdSe$_{6}$), niobium palladium sulfide (Nb$_{2}$PdS$_{6}$), niobium palladium selenide (Nb$_{2}$PdSe$_{6}$), Inorg. Chem. pp. 3063–3067 (1985), doi:10.1021/ic00213a038.

Prototype Generator

aflow --proto=AB6C2_mC18_12_a_3i_i --params=$a,b/a,c/a,\beta,x_{2},z_{2},x_{3},z_{3},x_{4},z_{4},x_{5},z_{5}$

Species:

Running:

Output: