Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB6CD2_cP120_213_d_3e_ac_e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/1AJT
or https://aflow.org/p/AB6CD2_cP120_213_d_3e_ac_e-001
or PDF Version

SrCuTe$_{2}$O$_{6}$ Structure: AB6CD2_cP120_213_d_3e_ac_e-001

Picture of Structure; Click for Big Picture
Prototype CuO$_{6}$SrTe$_{2}$
AFLOW prototype label AB6CD2_cP120_213_d_3e_ac_e-001
ICSD 32364
Pearson symbol cP120
Space group number 213
Space group symbol $P4_132$
AFLOW prototype command aflow --proto=AB6CD2_cP120_213_d_3e_ac_e-001
--params=$a, \allowbreak x_{2}, \allowbreak y_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

Other compounds with this structure

BaCuTe$_{2}$O$_{6}$,  PbCuTe$_{2}$O$_{6}$


  • We have shifted the origin so that the Sr-I atoms, located on the (4b) (7/8 7/8 7/8) Wyckoff positions by (Chillal, 2020) are now on the (4a) (3/8 3/8 3/8) sites.
  • This structure can also be expressed in the enantiomorphic space group $P4_{3}32$ #212.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (4a) Sr I
$\mathbf{B_{2}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (4a) Sr I
$\mathbf{B_{3}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (4a) Sr I
$\mathbf{B_{4}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (4a) Sr I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8c) Sr II
$\mathbf{B_{6}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Sr II
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Sr II
$\mathbf{B_{8}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8c) Sr II
$\mathbf{B_{9}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Sr II
$\mathbf{B_{10}}$ = $- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Sr II
$\mathbf{B_{11}}$ = $\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Sr II
$\mathbf{B_{12}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Sr II
$\mathbf{B_{13}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{14}}$ = $\frac{3}{8} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{15}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{16}}$ = $\frac{5}{8} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{17}}$ = $\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{18}}$ = $\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{19}}$ = $- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{20}}$ = $- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{21}}$ = $y_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{22}}$ = $- y_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{23}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{24}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (12d) Cu I
$\mathbf{B_{25}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{26}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{27}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{28}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{29}}$ = $z_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{30}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{31}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{32}}$ = $- z_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{33}}$ = $y_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{34}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{35}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{36}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{37}}$ = $\left(y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{38}}$ = $- \left(y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{39}}$ = $\left(y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{40}}$ = $- \left(y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{41}}$ = $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{42}}$ = $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{43}}$ = $- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(z_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{44}}$ = $\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{45}}$ = $\left(z_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{46}}$ = $\left(z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{47}}$ = $- \left(z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{48}}$ = $- \left(z_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O I
$\mathbf{B_{49}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{50}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{51}}$ = $- x_{5} \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{52}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{53}}$ = $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{54}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{55}}$ = $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{56}}$ = $- z_{5} \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{57}}$ = $y_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{58}}$ = $- y_{5} \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{59}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{60}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{61}}$ = $\left(y_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{62}}$ = $- \left(y_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{63}}$ = $\left(y_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{64}}$ = $- \left(y_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{65}}$ = $\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{66}}$ = $- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(z_{5} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{67}}$ = $- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(z_{5} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{68}}$ = $\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{69}}$ = $\left(z_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{70}}$ = $\left(z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{71}}$ = $- \left(z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{72}}$ = $- \left(z_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O II
$\mathbf{B_{73}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{74}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{75}}$ = $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{76}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{77}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{78}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{79}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{80}}$ = $- z_{6} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{81}}$ = $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{82}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{83}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{84}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{85}}$ = $\left(y_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{86}}$ = $- \left(y_{6} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{87}}$ = $\left(y_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{88}}$ = $- \left(y_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{89}}$ = $\left(x_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{90}}$ = $- \left(x_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{91}}$ = $- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{92}}$ = $\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{93}}$ = $\left(z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{94}}$ = $\left(z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{95}}$ = $- \left(z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{96}}$ = $- \left(z_{6} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{97}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{98}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{99}}$ = $- x_{7} \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{100}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{101}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{102}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{103}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{104}}$ = $- z_{7} \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{105}}$ = $y_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{106}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{107}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{108}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{109}}$ = $\left(y_{7} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{110}}$ = $- \left(y_{7} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{111}}$ = $\left(y_{7} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{112}}$ = $- \left(y_{7} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{113}}$ = $\left(x_{7} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{114}}$ = $- \left(x_{7} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(z_{7} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{115}}$ = $- \left(x_{7} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(z_{7} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{116}}$ = $\left(x_{7} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{7} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{117}}$ = $\left(z_{7} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{118}}$ = $\left(z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{119}}$ = $- \left(z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I
$\mathbf{B_{120}}$ = $- \left(z_{7} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) Te I

References

  • S. Chillal, A. T. M. N. Islam, H. Luetkens, E. CanĂ©vet, Y. Skourski, D. Khalyavin, and B. Lake, Magnetic structure of the quantum magnet SrCuTe$_{2}$O$_{6}$, Phys. Rev. B 102, 224424 (2020), doi:10.1103/PhysRevB.102.224424.

Found in

  • P. Bag, N. Ahmed, V. Singh, M. Sahoo, A. A. Tsirlin, and R. Nath, Low-dimensional magnetism of BaCuTe$_{2}$O$_{6}$, Phys. Rev. B 103, 134410 (2021), doi:10.1103/PhysRevB.103.134410.

Prototype Generator

aflow --proto=AB6CD2_cP120_213_d_3e_ac_e --params=$a,x_{2},y_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: