AFLOW Prototype: AB6C_tP8_123_a_hi_b-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/1ALT
or
https://aflow.org/p/AB6C_tP8_123_a_hi_b-001
or
PDF Version
Prototype | CeGa$_{6}$Pd |
AFLOW prototype label | AB6C_tP8_123_a_hi_b-001 |
ICSD | 240161 |
Pearson symbol | tP8 |
Space group number | 123 |
Space group symbol | $P4/mmm$ |
AFLOW prototype command |
aflow --proto=AB6C_tP8_123_a_hi_b-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$ |
LaPdGa$_{6}$, SrAu(Au$_{0.5}$Ga$_{0.5}$)$_{2}$Ga$_{4}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Ce I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1b) | Pd I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (2h) | Ga I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (2h) | Ga I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (4i) | Ga II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ | (4i) | Ga II |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (4i) | Ga II |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{4} \,\mathbf{\hat{z}}$ | (4i) | Ga II |