AFLOW Prototype: ABC2_mC8_8_a_a_b-001
This structure originally had the label ABC2_mC8_8_a_a_b. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/X9AR
or
https://aflow.org/p/ABC2_mC8_8_a_a_b-001
or
PDF Version
Prototype | KNO$_{2}$ |
AFLOW prototype label | ABC2_mC8_8_a_a_b-001 |
Strukturbericht designation | $F5_{11}$ |
ICSD | 26764 |
Pearson symbol | mC8 |
Space group number | 8 |
Space group symbol | $Cm$ |
AFLOW prototype command |
aflow --proto=ABC2_mC8_8_a_a_b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$ |
The room-temperature structure of KNO$_{2}$ was first considered to have monoclinic symmetry, …, but recent studies have established the structure to be rhombohedral …(Rao, 1975). The $F5_{11}$ structure is thus neither the ground state structure of KNO$_{2}$ nor the room-temperature structure, which is somewhat disordered with space group $R\overline{3}m$ #166. We present this structure as part of the historical record.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | K I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | N I |
$\mathbf{B_{3}}$ | = | $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (4b) | O I |
$\mathbf{B_{4}}$ | = | $\left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (4b) | O I |