Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC2_mC8_8_a_a_b-001

This structure originally had the label ABC2_mC8_8_a_a_b. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/X9AR
or https://aflow.org/p/ABC2_mC8_8_a_a_b-001
or PDF Version

$F5_{11}$ (KNO$_{2}$) Structure (Obsolete): ABC2_mC8_8_a_a_b-001

Picture of Structure; Click for Big Picture
Prototype KNO$_{2}$
AFLOW prototype label ABC2_mC8_8_a_a_b-001
Strukturbericht designation $F5_{11}$
ICSD 26764
Pearson symbol mC8
Space group number 8
Space group symbol $Cm$
AFLOW prototype command aflow --proto=ABC2_mC8_8_a_a_b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

  • The room-temperature structure of KNO$_{2}$ was first considered to have monoclinic symmetry, …, but recent studies have established the structure to be rhombohedral … (Rao, 1975). The $F5_{11}$ structure is thus neither the ground state structure of KNO$_{2}$ nor the room-temperature structure, which is somewhat disordered with space group $R\overline{3}m$ #166. We present this structure as part of the historical record.
  • (Ziegler, 1936) gave this structure in the $Am$ setting of space group #8. We used FINDSYM to transform it to the standard $Cm$ setting, which involved a considerable change in the orientation and length of the primitive lattice vectors.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) K I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) N I
$\mathbf{B_{3}}$ = $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4b) O I
$\mathbf{B_{4}}$ = $\left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4b) O I

References

  • G. E. Ziegler, The Crystal Structure of Potassium Nitrite, KNO$_{2}$, Z. Kristallogr. A 94, 491–499 (1936), doi:10.1524/zkri.1936.94.1.491.
  • C. N. R. Rao, B. Prakash, and M. Natarajan, Crystal Structure Transformations in Inorganic Nitrities, Nitrates, and Carbonates (National Bureau of Standards, 1975). National Standard Reference Data Series, NSRDS-NBS 53.

Prototype Generator

aflow --proto=ABC2_mC8_8_a_a_b --params=$a,b/a,c/a,\beta,x_{1},z_{1},x_{2},z_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: