Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC2_oC16_67_a_g_bg-001

This structure originally had the label ABC2_oC16_67_b_g_ag. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/BX6K
or https://aflow.org/p/ABC2_oC16_67_a_g_bg-001
or PDF Version

HoCuP$_{2}$ Structure: ABC2_oC16_67_a_g_bg-001

Picture of Structure; Click for Big Picture
Prototype CuHoP$_{2}$
AFLOW prototype label ABC2_oC16_67_a_g_bg-001
ICSD 94443
Pearson symbol oC16
Space group number 67
Space group symbol $Cmme$
AFLOW prototype command aflow --proto=ABC2_oC16_67_a_g_bg-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$

  • Al$_{2}$CuIr (A2BC_oC16_67_ag_b_g) and CuHoP$_{2}$ (ABC2_oC16_67_b_g_ag) have similar AFLOW prototype labels (i.e., same symmetry and set of Wyckoff positions with different stoichiometry labels due to alphabetic ordering of atomic species). They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}$ (4a) Cu I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}$ (4a) Cu I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4b) P I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4b) P I
$\mathbf{B_{5}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4g) Ho I
$\mathbf{B_{6}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4g) Ho I
$\mathbf{B_{7}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4g) P II
$\mathbf{B_{8}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4g) P II

References

  • Y. Mozharivsky, D. Kaczorowski, and H. F. Franzen, Symmetry-Breaking Transitions in HoCuAs$_{2-x}$P$_{x}$ and ErCuAs$_{2-x}$P$_{x}$ (x = 0-2): Crystal Structure, Application of Landau Theory, Magnetic and Electrical Properties, Z. Anorganische und Allgemeine Chemie 627, 2163–2172 (2001), doi:10.1002/1521-3749(200109)627:9<2163::AID-ZAAC2163>3.0.CO;2-N.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=ABC2_oC16_67_a_g_bg --params=$a,b/a,c/a,z_{3},z_{4}$

Species:

Running:

Output: