Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC2_oP16_53_h_e_gh-001

This structure originally had the label ABC2_oP16_53_h_e_gh. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/AVNP
or https://aflow.org/p/ABC2_oP16_53_h_e_gh-001
or PDF Version

TaNiTe$_{2}$ Structure: ABC2_oP16_53_h_e_gh-001

Picture of Structure; Click for Big Picture
Prototype NiTaTe$_{2}$
AFLOW prototype label ABC2_oP16_53_h_e_gh-001
ICSD 71063
Pearson symbol oP16
Space group number 53
Space group symbol $Pmna$
AFLOW prototype command aflow --proto=ABC2_oP16_53_h_e_gh-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}$

  • Our original published version of this structure (Hicks, 2019) has incorrect lattice parameters. These are corrected here, and now show the layered structure of TaNiTe$_{2}$.
  • The origin of the $y$-axis has been shifted by $b/2$ from that of (Tremel, 1991), moving the tantalum atoms from the (4f) Wyckoff position to (4e).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}$ = $a x_{1} \,\mathbf{\hat{x}}$ (4e) Ta I
$\mathbf{B_{2}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) Ta I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}$ = $- a x_{1} \,\mathbf{\hat{x}}$ (4e) Ta I
$\mathbf{B_{4}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) Ta I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4g) Te I
$\mathbf{B_{6}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4g) Te I
$\mathbf{B_{7}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4g) Te I
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4g) Te I
$\mathbf{B_{9}}$ = $y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4h) Ni I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4h) Ni I
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4h) Ni I
$\mathbf{B_{12}}$ = $- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4h) Ni I
$\mathbf{B_{13}}$ = $y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4h) Te II
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4h) Te II
$\mathbf{B_{15}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4h) Te II
$\mathbf{B_{16}}$ = $- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4h) Te II

References

  • W. Tremel, Isolated and Condensed Ta$_{2}$Ni$_{2}$ Clusters in the Layered Tellurides Ta$_{2}$Ni$_{2}$Te$_{4}$ and Ta$_{2}$Ni$_{3}$Te$_{5}$ 30, 840–843 (1991), doi:10.1002/anie.199108401.
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comput. Mater. Sci. 161, S1–S1011 (2019), doi:10.1016/j.commatsci.2018.10.043.

Found in

  • P. Villars, Ta$_{2}$Ni$_{2}$Te$_{4}$ (TaNiTe$_{2}$) Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.) SpringerMaterials.

Prototype Generator

aflow --proto=ABC2_oP16_53_h_e_gh --params=$a,b/a,c/a,x_{1},y_{2},y_{3},z_{3},y_{4},z_{4}$

Species:

Running:

Output: