AFLOW Prototype: ABC2_oP8_31_a_a_2a-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/TZ68
or
https://aflow.org/p/ABC2_oP8_31_a_a_2a-001
or
PDF Version
Prototype | CrHO$_{2}$ |
AFLOW prototype label | ABC2_oP8_31_a_a_2a-001 |
Mineral name | guyanaite |
ICSD | none |
Pearson symbol | oP8 |
Space group number | 31 |
Space group symbol | $Pmn2_1$ |
AFLOW prototype command |
aflow --proto=ABC2_oP8_31_a_a_2a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}$ |
InOOH
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $b y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (2a) | Cr I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | Cr I |
$\mathbf{B_{3}}$ | = | $y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2a) | H I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | H I |
$\mathbf{B_{5}}$ | = | $y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (2a) | O I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | O I |
$\mathbf{B_{7}}$ | = | $y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (2a) | O II |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | O II |