Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC2_tI16_141_a_b_e-003

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/XJE5
or https://aflow.org/p/ABC2_tI16_141_a_b_e-003
or PDF Version

γ-LiFeO$_{2}$ Structure: ABC2_tI16_141_a_b_e-003

Picture of Structure; Click for Big Picture
Prototype FeLiO$_{2}$
AFLOW prototype label ABC2_tI16_141_a_b_e-003
ICSD 174085
Pearson symbol tI16
Space group number 141
Space group symbol $I4_1/amd$
AFLOW prototype command aflow --proto=ABC2_tI16_141_a_b_e-003
--params=$a, \allowbreak c/a, \allowbreak z_{3}$

Other compounds with this structure

ErLiO$_{2}$,  $\delta$-LiAlO$_{2}$,  NaGdO$_{2}$,  NdNaO$_{2}$,  InLiO$_{2}$


  • FeLiO$_{2}$ exhibits a wide variety of structures, with the exact structure present depends on thermodynamic effects, preparation methods, and charge/discharge history.
  • We follow the nomenclature of (Kanno, 1996), where appropriate, with modifications found in (Tabuchi, 1995) and (Abdel-Ghany, 2012). The following list of structures is no doubt incomplete:
    • $\alpha$–LiFeO$_{2}$ is in the cubic rock salt ($B1$) structure, with lithium and iron randomly placed on the sodium site and oxygen on the chlorine site. It is synthesized at temperatures above 600°C.
    • $\beta$–LiFeO$_{2}$ is a tetragonal distortion of $\alpha$–LiFeO$_{2}$ with the lithium and iron atoms still randomly placed on their sublattice (we denote this site as Fe).
    • $\beta'$–LiFeO$_{2}$ is monoclinic and transforms to $\gamma$–LiFeO$_{2}$ near room temperature. This is likely the phase (Kanno, 1996) refers to as $\beta$–LiFeO$_{2}$.
    • $\gamma$–LiFeO$_{2}$ (this structure) is created by low-temperature synthesis below 500°C and can be considered as an ordered version of $\alpha$–LiFeO$_{2}$, with a doubled unit cell.
    • o-LiFeO$_{2}$ is orthorhombic, produced by an ion exchange interaction. It is (meta)-stable below 400°C, transforming to $\alpha$–LiFeO$_{2}$ above 600°C.
  • For $\gamma$–FeLiO$_{2}$ we use the data taken by (Barré, 2009) at 25°.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (4a) Fe I
$\mathbf{B_{2}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (4a) Fe I
$\mathbf{B_{3}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (4b) Li I
$\mathbf{B_{4}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (4b) Li I
$\mathbf{B_{5}}$ = $\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{6}}$ = $z_{3} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{7}}$ = $- \left(z_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{8}}$ = $- z_{3} \, \mathbf{a}_{1}- \left(z_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) O I

References

  • M. Barré and M. Catti, Neutron diffraction study of the β' and γ phases of LiFeO$_{2}$, J. Solid State Chem. 182, 2549–2554 (2009), doi:10.1016/j.jssc.2009.06.029.
  • R. Kanno, T. Shirane, Y. Kawamoto, Y. Takeda, M. Takano, M. Ohashi, and Y. Yamaguchi, Synthesis, Structure, and Electrochemical Properties of a New Lithium Iron Oxide, LiFeO$_{2}$, with a Corrugated Layer Structure, J. Electrochem. Soc. 143, 2435–2442 (1996), doi:10.1149/1.1837027.
  • M. Tabuchi, K. Ado, H. Sakaebe, C. Masquelier, H. Kageyama, and O. Nakamura, Preparation of AFeO$_{2}$ (A = Li, Na) by hydrothermal method, Solid State Ionics 79, 220–226 (1995), doi:10.1016/0167-2738(95)00065-E.
  • A. E. Abdel-Ghany, A. Mauger, H. Groult, K. Zaghib, and C. M. Julien, Structural properties and electrochemistry of α-LiFeO$_{2}$, J. Power Sources 197, 285–291 (2012), doi:10.1016/j.jpowsour.2011.09.054.

Prototype Generator

aflow --proto=ABC2_tI16_141_a_b_e --params=$a,c/a,z_{3}$

Species:

Running:

Output: