Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC2_tP8_129_a_c_bc-002

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/3Z42
or https://aflow.org/p/ABC2_tP8_129_a_c_bc-002
or PDF Version

HfCuSi$_{2}$ Structure: ABC2_tP8_129_a_c_bc-002

Picture of Structure; Click for Big Picture
Prototype CuHfSi$_{2}$
AFLOW prototype label ABC2_tP8_129_a_c_bc-002
ICSD 87174
Pearson symbol tP8
Space group number 129
Space group symbol $P4/nmm$
AFLOW prototype command aflow --proto=ABC2_tP8_129_a_c_bc-002
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$

Other compounds with this structure

CeAsSb$_{2}$,  DyZnSn$_{2}$,  ErZnSn$_{2}$,  GdZnSn$_{2}$,  HfCuGe$_{2}$,  HfCuSi$_{2}$,  HoZnSn$_{2}$,  LaAsSb$_{2}$,  LuSn$_{2}$,  TmZnSn$_{2}$,  YZnSn$_{2}$,  YbMnBi$_{2}$,  YbMnSb$_{2}$,  ZrCuGe$_{2}$,  ZrCuSi$_{2}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (2a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (2a) Cu I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Si I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Si I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2c) Hf I
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (2c) Hf I
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2c) Si II
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2c) Si II

References

  • L. S. Andrukhiv, L. A. Lysenko, Y. P. Yarmolyuk, and E. I. Gladyshevskii, On structure of the compounds HfCuSi$_{2}$, HfCuGe$_{2}$, ZrCuSi$_{2}$ and ZrCuGe$_{2}$, Dopov. Akad. Nauk Ukr. RSR, Ser. A pp. 645–648 (1975).

Found in

  • M. W. Pohlkamp and W. Jeitschko, Preparation, Properties, and Crystal Structure of Quaternary Silicide Carbides RCr$_{2}$Si$_{2}$C (R = Y, La-Nd, Sm, Gd-Ho), Z. Naturforsch. B 56, 1143–1148 (2001), doi:10.1515/znb-2001-1108.

Prototype Generator

aflow --proto=ABC2_tP8_129_a_c_bc --params=$a,c/a,z_{3},z_{4}$

Species:

Running:

Output: