AFLOW Prototype: ABC2_tP8_129_a_c_bc-002
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/3Z42
or
https://aflow.org/p/ABC2_tP8_129_a_c_bc-002
or
PDF Version
Prototype | CuHfSi$_{2}$ |
AFLOW prototype label | ABC2_tP8_129_a_c_bc-002 |
ICSD | 87174 |
Pearson symbol | tP8 |
Space group number | 129 |
Space group symbol | $P4/nmm$ |
AFLOW prototype command |
aflow --proto=ABC2_tP8_129_a_c_bc-002
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$ |
CeAsSb$_{2}$, DyZnSn$_{2}$, ErZnSn$_{2}$, GdZnSn$_{2}$, HfCuGe$_{2}$, HfCuSi$_{2}$, HoZnSn$_{2}$, LaAsSb$_{2}$, LuSn$_{2}$, TmZnSn$_{2}$, YZnSn$_{2}$, YbMnBi$_{2}$, YbMnSb$_{2}$, ZrCuGe$_{2}$, ZrCuSi$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (2a) | Cu I |
$\mathbf{B_{2}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ | (2a) | Cu I |
$\mathbf{B_{3}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2b) | Si I |
$\mathbf{B_{4}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2b) | Si I |
$\mathbf{B_{5}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (2c) | Hf I |
$\mathbf{B_{6}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (2c) | Hf I |
$\mathbf{B_{7}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (2c) | Si II |
$\mathbf{B_{8}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (2c) | Si II |