Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC3D_oC24_63_c_c_cf_a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/3902
or https://aflow.org/p/ABC3D_oC24_63_c_c_cf_a-001
or PDF Version

KCuZrS$_{3}$ Structure: ABC3D_oC24_63_c_c_cf_a-001

Picture of Structure; Click for Big Picture
Prototype CuKS$_{3}$Zr
AFLOW prototype label ABC3D_oC24_63_c_c_cf_a-001
ICSD 80624
Pearson symbol oC24
Space group number 63
Space group symbol $Cmcm$
AFLOW prototype command aflow --proto=ABC3D_oC24_63_c_c_cf_a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{2}, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak y_{5}, \allowbreak z_{5}$

Other compounds with this structure

BaCuYSe$_{3}$,  Ba$_{0.5}$CuZrSe$_{3}$,  KCuZrSe$_{3}$,  KCuZrTe$_{3}$,  Sr$_{0.5}$CuZrSe$_{3}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Zr I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (4a) Zr I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Cu I
$\mathbf{B_{4}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Cu I
$\mathbf{B_{5}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) K I
$\mathbf{B_{6}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) K I
$\mathbf{B_{7}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) S I
$\mathbf{B_{8}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) S I
$\mathbf{B_{9}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8f) S II
$\mathbf{B_{10}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) S II
$\mathbf{B_{11}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) S II
$\mathbf{B_{12}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8f) S II

References

  • M. F. Mansuetto, P. M. Keane, and J. A. Ibers, Synthesis, structure, and conductivity of the new group IV chalcogenides, KCuZrQ$_{3}$ (Q = S, Se, Te), J. Solid State Chem. 101, 257–264 (1992), doi:10.1016/0022-4596(92)90182-U.

Found in

  • S. Maier, J. Prakash, D. Berthebaud, O. Perez, S. Bobev, and F. Gascoin, Crystal structures of the four new quaternary copper(I)-selenides A$_{0.5}$CuZrSe$_{3}$ and ACuYSe$_{3}$ (A=Sr, Ba), J. Solid State Chem. 242, 14–20 (2016), doi:10.1016/j.jssc.2016.06.023.

Prototype Generator

aflow --proto=ABC3D_oC24_63_c_c_cf_a --params=$a,b/a,c/a,y_{2},y_{3},y_{4},y_{5},z_{5}$

Species:

Running:

Output: