Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC3_hR5_160_a_a_b-002

This structure originally had the label ABC3_hR5_160_a_a_b. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/V4KY
or https://aflow.org/p/ABC3_hR5_160_a_a_b-002
or PDF Version

γ-Potassium Nitrate (KNO$_{3}$) Structure: ABC3_hR5_160_a_a_b-002

Picture of Structure; Click for Big Picture
Prototype KNO$_{3}$
AFLOW prototype label ABC3_hR5_160_a_a_b-002
ICSD 384
Pearson symbol hR5
Space group number 160
Space group symbol $R3m$
AFLOW prototype command aflow --proto=ABC3_hR5_160_a_a_b-002
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak z_{3}$

Other compounds with this structure

NH$_{4}$ClO$_{4}$,  BaTiO$_{3}$


  • On heating, $\alpha$–KNO$_{3}$ (either Structure I or Structure II) transforms into $\beta$–KNO$_{3}$ at 128$^\circ$C. When heated above 200$^\circ$C and then cooled, the $\beta$ phase transforms into the metastable ferroelectric $\gamma$–KNO$_{3}$ phase, which can remain down to room temperature.
  • (Nimmo, 1976) give the data for $\gamma$–KNO$_{3}$ taken at 91$^\circ$C.
  • Although this is isostructural with the KBrO$_{3}$ ($G0_{7}$) structure, we have included it here to facilitate the comparison of the various KNO$_{3}$ phases.
  • $\gamma$–KNO$_{3}$ and KBrO$_{3}$ ($G0_{7}$) have the same AFLOW prototype label, ABC3_hR5_160_a_a_b. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.
  • Hexagonal settings rhombohedral structures can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (1a) K I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (1a) N I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (3b) O I
$\mathbf{B_{4}}$ = $z_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (3b) O I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (3b) O I

References

  • J. K. Nimmo and B. W. Lucas, The crystal structures of γ-and β-KNO3 and the α-β-γ phase transformations, Acta Crystallogr. Sect. B 32 (1976), doi:10.1107/S0567740876006894.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=ABC3_hR5_160_a_a_b --params=$a,c/a,x_{1},x_{2},x_{3},z_{3}$

Species:

Running:

Output: