Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC3_mC10_5_b_a_ac-001

This structure originally had the label ABC3_mC10_5_b_a_ac. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/6HGL
or https://aflow.org/p/ABC3_mC10_5_b_a_ac-001
or PDF Version

(Ba,Ca)CO$_{3}$ ($C2$) Structure: ABC3_mC10_5_b_a_ac-001

Picture of Structure; Click for Big Picture
Prototype BaCCaO$_{3}$
AFLOW prototype label ABC3_mC10_5_b_a_ac-001
ICSD 403432
Pearson symbol mC10
Space group number 5
Space group symbol $C2$
AFLOW prototype command aflow --proto=ABC3_mC10_5_b_a_ac-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak y_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}$ = $b y_{1} \,\mathbf{\hat{y}}$ (2a) C I
$\mathbf{B_{2}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}$ = $b y_{2} \,\mathbf{\hat{y}}$ (2a) O I
$\mathbf{B_{3}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (2b) Ba I
$\mathbf{B_{4}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) O II
$\mathbf{B_{5}}$ = $- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) O II

References

  • D. Spahr, L. Bayarjargal, V. Vinograd, R. Luchitskaia, V. Milman, and B. Winkler, A new BaCa(CO$_{3}$)$_{2}$ polymorph, Acta Crystallogr. Sect. B 75, 291–300 (2019), doi:10.1107/S2052520619003238.
  • F. Sartori, New data on alstonite, Lithos 8, 199–207 (1975).

Prototype Generator

aflow --proto=ABC3_mC10_5_b_a_ac --params=$a,b/a,c/a,\beta,y_{1},y_{2},y_{3},x_{4},y_{4},z_{4}$

Species:

Running:

Output: