AFLOW Prototype: ABC3_mC10_5_b_a_ac-001
This structure originally had the label ABC3_mC10_5_b_a_ac. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/6HGL
or
https://aflow.org/p/ABC3_mC10_5_b_a_ac-001
or
PDF Version
$C2$) Structure: ABC3_mC10_5_b_a_ac-001
Prototype | BaCCaO$_{3}$ |
AFLOW prototype label | ABC3_mC10_5_b_a_ac-001 |
ICSD | 403432 |
Pearson symbol | mC10 |
Space group number | 5 |
Space group symbol | $C2$ |
AFLOW prototype command |
aflow --proto=ABC3_mC10_5_b_a_ac-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak y_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$ |
HT synthesisresults of (Spahr, 2019) while the ICSD entry uses the
precipitation syntheisresults. This makes the two CIF files slightly different.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}$ | = | $b y_{1} \,\mathbf{\hat{y}}$ | (2a) | C I |
$\mathbf{B_{2}}$ | = | $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}$ | = | $b y_{2} \,\mathbf{\hat{y}}$ | (2a) | O I |
$\mathbf{B_{3}}$ | = | $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ | (2b) | Ba I |
$\mathbf{B_{4}}$ | = | $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (4c) | O II |
$\mathbf{B_{5}}$ | = | $- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (4c) | O II |