Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC3_oP20_54_e_d_cf-001

This structure originally had the label ABC3_oP20_54_e_d_cf. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/WWU9
or https://aflow.org/p/ABC3_oP20_54_e_d_cf-001
or PDF Version

BiGaO$_{3}$ Structure: ABC3_oP20_54_e_d_cf-001

Picture of Structure; Click for Big Picture
Prototype BiGaO$_{3}$
AFLOW prototype label ABC3_oP20_54_e_d_cf-001
ICSD 171709
Pearson symbol oP20
Space group number 54
Space group symbol $Pcca$
AFLOW prototype command aflow --proto=ABC3_oP20_54_e_d_cf-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$

  • The lattice constants for this structure are from (Yusa, 2009), measured at 3.2 GPa. The authors did not give the atomic positions. These are taken from (Belik, 2006) at ambient pressure and temperature and are assumed to be similar to those at higher pressure.
  • The ICSD entry is from (Belik, 2006).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) O I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) O I
$\mathbf{B_{3}}$ = $- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) O I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) O I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+c z_{2} \,\mathbf{\hat{z}}$ (4d) Ga I
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) Ga I
$\mathbf{B_{7}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- c z_{2} \,\mathbf{\hat{z}}$ (4d) Ga I
$\mathbf{B_{8}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) Ga I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4e) Bi I
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) Bi I
$\mathbf{B_{11}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4e) Bi I
$\mathbf{B_{12}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) Bi I
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{14}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{15}}$ = $- x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{16}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{17}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{18}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{19}}$ = $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{20}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O II

References

  • H. Yusa, A. A. Belik, E. Takayama-Muromachi, N. Hirao, and Y. Ohishi, High-pressure phase transitions in BiMO$_{3}$ (M=Al, Ga, and In): In situ x-ray diffraction and Raman scattering experiments, Phys. Rev. B 80, 214103 (2009), doi:10.1103/PhysRevB.80.214103.
  • A. A. Belik, T. Wuernisha, T. Kamiyama, K. Mori, M. Maie, T. Nagai, Y. Matsui, and E. Takayama-Muromachi, High-Pressure Synthesis, Crystal Structures, and Properties of Perovskite-like BiAlO$_{3}$ and Pyroxene-like BiGaO$_{3}$, Chem. Mater. 18, 133–139 (2006), doi:10.1021/cm052020b.

Found in

  • P. Villars, BiGaO$_{3}$ (GaBiO$_{3}$ orth) Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.) SpringerMaterials.

Prototype Generator

aflow --proto=ABC3_oP20_54_e_d_cf --params=$a,b/a,c/a,y_{1},z_{2},z_{3},x_{4},y_{4},z_{4}$

Species:

Running:

Output: