Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC3_oP40_17_abcd_2e_abcd4e-001

This structure originally had the label ABC3_oP40_17_abcd_2e_abcd4e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/D6BJ
or https://aflow.org/p/ABC3_oP40_17_abcd_2e_abcd4e-001
or PDF Version

NaNbO$_{3}$ Structure: ABC3_oP40_17_abcd_2e_abcd4e-001

Picture of Structure; Click for Big Picture
Prototype NaNbO$_{3}$
AFLOW prototype label ABC3_oP40_17_abcd_2e_abcd4e-001
ICSD 76432
Pearson symbol oP40
Space group number 17
Space group symbol $P222_1$
AFLOW prototype command aflow --proto=ABC3_oP40_17_abcd_2e_abcd4e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{5}, \allowbreak y_{6}, \allowbreak y_{7}, \allowbreak y_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}$

  • (Downs, 2003) identifies this as a possible polymorph of lueshite.
  • If the aflow parameters are set to --params$=a,1,\sqrt{8},1/2,0,0,1/2,1/2,0,0,1/2,0,0,3/8,1/2,1/2,3/8,1/4,1/4,3/8,3/4,1/4,3/8,1/4,3/4,3/8,3/4,3/4,3/8$ then the structure is equivalent to cubic perovskite $E2_{1}$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}$ = $a x_{1} \,\mathbf{\hat{x}}$ (2a) Na I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) Na I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}$ = $a x_{2} \,\mathbf{\hat{x}}$ (2a) O I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ (2b) Na II
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Na II
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ (2b) O II
$\mathbf{B_{8}}$ = $- x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) O II
$\mathbf{B_{9}}$ = $y_{5} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2c) Na III
$\mathbf{B_{10}}$ = $- y_{5} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2c) Na III
$\mathbf{B_{11}}$ = $y_{6} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{6} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2c) O III
$\mathbf{B_{12}}$ = $- y_{6} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{6} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2c) O III
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2d) Na IV
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2d) Na IV
$\mathbf{B_{15}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2d) O IV
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2d) O IV
$\mathbf{B_{17}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (4e) Nb I
$\mathbf{B_{18}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) Nb I
$\mathbf{B_{19}}$ = $- x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) Nb I
$\mathbf{B_{20}}$ = $x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (4e) Nb I
$\mathbf{B_{21}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (4e) Nb II
$\mathbf{B_{22}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) Nb II
$\mathbf{B_{23}}$ = $- x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) Nb II
$\mathbf{B_{24}}$ = $x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (4e) Nb II
$\mathbf{B_{25}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (4e) O V
$\mathbf{B_{26}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) O V
$\mathbf{B_{27}}$ = $- x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) O V
$\mathbf{B_{28}}$ = $x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (4e) O V
$\mathbf{B_{29}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (4e) O VI
$\mathbf{B_{30}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) O VI
$\mathbf{B_{31}}$ = $- x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) O VI
$\mathbf{B_{32}}$ = $x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (4e) O VI
$\mathbf{B_{33}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (4e) O VII
$\mathbf{B_{34}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) O VII
$\mathbf{B_{35}}$ = $- x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) O VII
$\mathbf{B_{36}}$ = $x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (4e) O VII
$\mathbf{B_{37}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (4e) O VIII
$\mathbf{B_{38}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) O VIII
$\mathbf{B_{39}}$ = $- x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) O VIII
$\mathbf{B_{40}}$ = $x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (4e) O VIII

References

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=ABC3_oP40_17_abcd_2e_abcd4e --params=$a,b/a,c/a,x_{1},x_{2},x_{3},x_{4},y_{5},y_{6},y_{7},y_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14}$

Species:

Running:

Output: