AFLOW Prototype: ABC4D2_tI16_121_a_b_i_c-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/RB89
or
https://aflow.org/p/ABC4D2_tI16_121_a_b_i_c-001
or
PDF Version
Prototype | CdGeTe$_{4}$Tl$_{2}$ |
AFLOW prototype label | ABC4D2_tI16_121_a_b_i_c-001 |
ICSD | 172502 |
Pearson symbol | tI16 |
Space group number | 121 |
Space group symbol | $I\overline{4}2m$ |
AFLOW prototype command |
aflow --proto=ABC4D2_tI16_121_a_b_i_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak z_{4}$ |
Tl$_{2}$CdSnTe$_{4}$, Tl$_{2}$HgGeTe$_{4}$, Tl$_{2}$HgSiSe$_{4}$, Tl$_{2}$HgSnSe$_{4}$, Tl$_{2}$HgSnTe$_{4}$, Tl$_{2}$MnGeTe$_{4}$, Tl$_{2}$MnSnTe$_{4}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Cd I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2b) | Ge I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (4c) | Tl I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (4c) | Tl I |
$\mathbf{B_{5}}$ | = | $\left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+2 x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8i) | Te I |
$\mathbf{B_{6}}$ | = | $- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- 2 x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8i) | Te I |
$\mathbf{B_{7}}$ | = | $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8i) | Te I |
$\mathbf{B_{8}}$ | = | $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8i) | Te I |