AFLOW Prototype: ABC4D_oI28_74_a_c_hi_e-001
This structure originally had the label ABC4D_oI28_74_a_d_hi_e. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/50N0
or
https://aflow.org/p/ABC4D_oI28_74_a_c_hi_e-001
or
PDF Version
Prototype | CuLiO$_{4}$V |
AFLOW prototype label | ABC4D_oI28_74_a_c_hi_e-001 |
ICSD | 65677 |
Pearson symbol | oI28 |
Space group number | 74 |
Space group symbol | $Imma$ |
AFLOW prototype command |
aflow --proto=ABC4D_oI28_74_a_c_hi_e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Cu I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4a) | Cu I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4c) | Li I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4c) | Li I |
$\mathbf{B_{5}}$ | = | $\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (4e) | V I |
$\mathbf{B_{6}}$ | = | $- \left(z_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (4e) | V I |
$\mathbf{B_{7}}$ | = | $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8h) | O I |
$\mathbf{B_{8}}$ | = | $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- b \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8h) | O I |
$\mathbf{B_{9}}$ | = | $\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8h) | O I |
$\mathbf{B_{10}}$ | = | $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8h) | O I |
$\mathbf{B_{11}}$ | = | $\left(z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8i) | O II |
$\mathbf{B_{12}}$ | = | $\left(z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8i) | O II |
$\mathbf{B_{13}}$ | = | $- \left(z_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (8i) | O II |
$\mathbf{B_{14}}$ | = | $- \left(z_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (8i) | O II |