Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC4_mP12_13_e_a_2g-001

This structure originally had the label ABC4_mP12_13_e_a_2g. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/5BWB
or https://aflow.org/p/ABC4_mP12_13_e_a_2g-001
or PDF Version

Sylvanite (AgAuTe$_{4}$, $E1_{b}$) Structure: ABC4_mP12_13_e_a_2g-001

Picture of Structure; Click for Big Picture
Prototype AgAuTe$_{4}$
AFLOW prototype label ABC4_mP12_13_e_a_2g-001
Strukturbericht designation $E1_{b}$
Mineral name sylvanite
ICSD 30874
Pearson symbol mP12
Space group number 13
Space group symbol $P2/c$
AFLOW prototype command aflow --proto=ABC4_mP12_13_e_a_2g-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Au I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Au I
$\mathbf{B_{3}}$ = $y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Ag I
$\mathbf{B_{4}}$ = $- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Ag I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) Te I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c \left(z_{3} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) Te I
$\mathbf{B_{7}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) Te I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{3} + c \left(z_{3} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) Te I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) Te II
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c \left(z_{4} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) Te II
$\mathbf{B_{11}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) Te II
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{4} + c \left(z_{4} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) Te II

References

  • F. Pertlik, Kristallchemie natürlicher Telluride I: Verfeinerung der Kristallstruktur des Sylvanits, AuAgTe$_4$, Tschermaks mineralogische und petrographische Mitteilungen 33, 203–12 (1984), doi:10.1007/BF01081381.

Found in

  • P. Villars, NaP Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database).

Prototype Generator

aflow --proto=ABC4_mP12_13_e_a_2g --params=$a,b/a,c/a,\beta,y_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4}$

Species:

Running:

Output: