AFLOW Prototype: ABC6D15_oC46_38_b_b_2a2d_2ab4d2e-001
This structure originally had the label ABC6D15_oC46_38_b_b_2a2d_2ab4d2e. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/MYRE
or
https://aflow.org/p/ABC6D15_oC46_38_b_b_2a2d_2ab4d2e-001
or
PDF Version
Prototype | FNaNb$_{6}$O$_{15}$ |
AFLOW prototype label | ABC6D15_oC46_38_b_b_2a2d_2ab4d2e-001 |
ICSD | 24109 |
Pearson symbol | oC46 |
Space group number | 38 |
Space group symbol | $Amm2$ |
AFLOW prototype command |
aflow --proto=ABC6D15_oC46_38_b_b_2a2d_2ab4d2e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak y_{15}, \allowbreak z_{15}$ |
NaNb$_{6}$O$_{15}$(OH)
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (2a) | Nb I |
$\mathbf{B_{2}}$ | = | $- z_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (2a) | Nb II |
$\mathbf{B_{3}}$ | = | $- z_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (2a) | O I |
$\mathbf{B_{4}}$ | = | $- z_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (2a) | O II |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ | (2b) | F I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ | (2b) | Na I |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ | (2b) | O III |
$\mathbf{B_{8}}$ | = | $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ | = | $b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (4d) | Nb III |
$\mathbf{B_{9}}$ | = | $- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ | = | $- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (4d) | Nb III |
$\mathbf{B_{10}}$ | = | $\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ | = | $b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (4d) | Nb IV |
$\mathbf{B_{11}}$ | = | $- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ | = | $- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (4d) | Nb IV |
$\mathbf{B_{12}}$ | = | $\left(y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ | = | $b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (4d) | O IV |
$\mathbf{B_{13}}$ | = | $- \left(y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ | = | $- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (4d) | O IV |
$\mathbf{B_{14}}$ | = | $\left(y_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ | = | $b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (4d) | O V |
$\mathbf{B_{15}}$ | = | $- \left(y_{11} + z_{11}\right) \, \mathbf{a}_{2}- \left(y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ | = | $- b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (4d) | O V |
$\mathbf{B_{16}}$ | = | $\left(y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ | = | $b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ | (4d) | O VI |
$\mathbf{B_{17}}$ | = | $- \left(y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ | = | $- b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ | (4d) | O VI |
$\mathbf{B_{18}}$ | = | $\left(y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ | = | $b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (4d) | O VII |
$\mathbf{B_{19}}$ | = | $- \left(y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ | = | $- b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (4d) | O VII |
$\mathbf{B_{20}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\left(y_{14} - z_{14}\right) \, \mathbf{a}_{2}+\left(y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (4e) | O VIII |
$\mathbf{B_{21}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- \left(y_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (4e) | O VIII |
$\mathbf{B_{22}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\left(y_{15} - z_{15}\right) \, \mathbf{a}_{2}+\left(y_{15} + z_{15}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ | (4e) | O IX |
$\mathbf{B_{23}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- \left(y_{15} + z_{15}\right) \, \mathbf{a}_{2}- \left(y_{15} - z_{15}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ | (4e) | O IX |