Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC6D15_oC46_38_b_b_2a2d_2ab4d2e-001

This structure originally had the label ABC6D15_oC46_38_b_b_2a2d_2ab4d2e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/MYRE
or https://aflow.org/p/ABC6D15_oC46_38_b_b_2a2d_2ab4d2e-001
or PDF Version

NaNb$_{6}$O$_{15}$F Structure: ABC6D15_oC46_38_b_b_2a2d_2ab4d2e-001

Picture of Structure; Click for Big Picture
Prototype FNaNb$_{6}$O$_{15}$
AFLOW prototype label ABC6D15_oC46_38_b_b_2a2d_2ab4d2e-001
ICSD 24109
Pearson symbol oC46
Space group number 38
Space group symbol $Amm2$
AFLOW prototype command aflow --proto=ABC6D15_oC46_38_b_b_2a2d_2ab4d2e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak y_{15}, \allowbreak z_{15}$

Other compounds with this structure

NaNb$_{6}$O$_{15}$(OH)


  • The X-ray scattering of an F$^-$ ion is almost identical to that of O$^{-2}$, and (Andersson, 1965) was not able to distinguish between them. He arbitrarily labeled the (2b) site he designated as O(1) as the location of the fluorine ion and we follow this, but in reality we have no idea if the F$^-$ ions are located on this site, are ordered on another site, or are statistically distributed on the oxygen sites. Presumably the same considerations hold for the OH radical in NaNb$_{6}$O$_{15}$(OH).
  • Andersson sets $z_{4} = 0.159$ as the coordinate of what we label as O-II and he calls O(10), but this gives an unreasonably short distance between the Nb-II and O-II atoms, and the distances between the O-II atom and the other atoms in the structure does not agree with the distances given his paper. If we assume that the first two digits were transposed when printed, so that $z_{4} = 0.519$, we get within 0.1% of Andersson's distances.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) Nb I
$\mathbf{B_{2}}$ = $- z_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2a) Nb II
$\mathbf{B_{3}}$ = $- z_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{4}}$ = $- z_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (2a) O II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (2b) F I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ (2b) Na I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ (2b) O III
$\mathbf{B_{8}}$ = $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4d) Nb III
$\mathbf{B_{9}}$ = $- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4d) Nb III
$\mathbf{B_{10}}$ = $\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (4d) Nb IV
$\mathbf{B_{11}}$ = $- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (4d) Nb IV
$\mathbf{B_{12}}$ = $\left(y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (4d) O IV
$\mathbf{B_{13}}$ = $- \left(y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (4d) O IV
$\mathbf{B_{14}}$ = $\left(y_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (4d) O V
$\mathbf{B_{15}}$ = $- \left(y_{11} + z_{11}\right) \, \mathbf{a}_{2}- \left(y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $- b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (4d) O V
$\mathbf{B_{16}}$ = $\left(y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (4d) O VI
$\mathbf{B_{17}}$ = $- \left(y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $- b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (4d) O VI
$\mathbf{B_{18}}$ = $\left(y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (4d) O VII
$\mathbf{B_{19}}$ = $- \left(y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $- b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (4d) O VII
$\mathbf{B_{20}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(y_{14} - z_{14}\right) \, \mathbf{a}_{2}+\left(y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (4e) O VIII
$\mathbf{B_{21}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(y_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (4e) O VIII
$\mathbf{B_{22}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(y_{15} - z_{15}\right) \, \mathbf{a}_{2}+\left(y_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (4e) O IX
$\mathbf{B_{23}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(y_{15} + z_{15}\right) \, \mathbf{a}_{2}- \left(y_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (4e) O IX

References


Prototype Generator

aflow --proto=ABC6D15_oC46_38_b_b_2a2d_2ab4d2e --params=$a,b/a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},z_{6},z_{7},y_{8},z_{8},y_{9},z_{9},y_{10},z_{10},y_{11},z_{11},y_{12},z_{12},y_{13},z_{13},y_{14},z_{14},y_{15},z_{15}$

Species:

Running:

Output: