AFLOW Prototype: ABC_mC12_12_i_i_i-003
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/69PJ
or
https://aflow.org/p/ABC_mC12_12_i_i_i-003
or
PDF Version
Prototype | BrCGd |
AFLOW prototype label | ABC_mC12_12_i_i_i-003 |
ICSD | 47225 |
Pearson symbol | mC12 |
Space group number | 12 |
Space group symbol | $C2/m$ |
AFLOW prototype command |
aflow --proto=ABC_mC12_12_i_i_i-003
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}$ |
TbCBr, ThCN, YCBr, YCCl, YCI
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | Br I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | Br I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | C I |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | C I |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | Gd I |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | Gd I |