Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC_mC12_12_i_i_i-003

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/69PJ
or https://aflow.org/p/ABC_mC12_12_i_i_i-003
or PDF Version

GdCBr Structure: ABC_mC12_12_i_i_i-003

Picture of Structure; Click for Big Picture
Prototype BrCGd
AFLOW prototype label ABC_mC12_12_i_i_i-003
ICSD 47225
Pearson symbol mC12
Space group number 12
Space group symbol $C2/m$
AFLOW prototype command aflow --proto=ABC_mC12_12_i_i_i-003
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}$

Other compounds with this structure

TbCBr,  ThCN,  YCBr,  YCCl,  YCI


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Br I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Br I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) C I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) C I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Gd I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Gd I

References

  • U. Schwanitz-Schüller and A. Simon, New Gadolinium Carbide Bromides: Gd$_{2}$C$_{2}$Br$_{2}$ and Gd$_{2}$CBr$_{2}$, Z. Naturforsch. B 40, 710–716 (1985), doi:10.1515/znb-1985-0602.

Found in

  • A. Simon, Empty, Filled, and Condensed Metal Clusters, J. Solid State Chem. 57, 2–16 (1985), doi:10.1016/S0022-4596(85)80055-4.
  • R. W. Henn, R. K. Kremer, and A. Simon, Magnetic Susceptibility Investigations on the Layered Superconductors Y$_{2}$C$_{2}$Br$_{2}$:RE (RE = Gd, Dy, Er), J. Supercond. Nov. Magn. 13, 471–477 (2000), doi:10.1023/A:1007771529474.

Prototype Generator

aflow --proto=ABC_mC12_12_i_i_i --params=$a,b/a,c/a,\beta,x_{1},z_{1},x_{2},z_{2},x_{3},z_{3}$

Species:

Running:

Output: