Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC_oC12_63_c_c_c-004

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/NQGP
or https://aflow.org/p/ABC_oC12_63_c_c_c-004
or PDF Version

UBC Structure: ABC_oC12_63_c_c_c-004

Picture of Structure; Click for Big Picture
Prototype BCU
AFLOW prototype label ABC_oC12_63_c_c_c-004
ICSD 73828
Pearson symbol oC12
Space group number 63
Space group symbol $Cmcm$
AFLOW prototype command aflow --proto=ABC_oC12_63_c_c_c-004
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak y_{3}$

  • (Rogl, 1993) found that excess carbon could replace boron, and that some uranium atoms could be replaced by scandium, lutetium, or thorium.
  • See the note on the MoAlB structure page concerning the relationship between this structure and other structures with the ABC_oC12_63_c_c_c label.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) B I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) B I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) C I
$\mathbf{B_{4}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) C I
$\mathbf{B_{5}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) U I
$\mathbf{B_{6}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) U I

References

  • P. Rogl, B. Rupp, I. Felner, and P. Fischer, Crystal Chemistry and Magnetism of Ternary Actinoid Boron Carbides UB$_{1-x}$C$_{1+x}$ and U$_{1-x}$M$_{x}$B$_{2}$C with M = Sc, Lu, and Th, J. Solid State Chem. 104, 377–390 (1993), doi:10.1006/jssc.1993.1173.

Found in

  • ICSD, Inorganic Crystal Structure Database. ID 73828.

Prototype Generator

aflow --proto=ABC_oC12_63_c_c_c --params=$a,b/a,c/a,y_{1},y_{2},y_{3}$

Species:

Running:

Output: