Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC_oC12_63_c_c_c-005

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/XSM0
or https://aflow.org/p/ABC_oC12_63_c_c_c-005
or PDF Version

MoAlB Structure: ABC_oC12_63_c_c_c-005

Picture of Structure; Click for Big Picture
Prototype AlBMo
AFLOW prototype label ABC_oC12_63_c_c_c-005
ICSD 251808
Pearson symbol oC12
Space group number 63
Space group symbol $Cmcm$
AFLOW prototype command aflow --proto=ABC_oC12_63_c_c_c-005
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak y_{3}$

Other compounds with this structure

NbNiB,  MgNiTb,  WAlB


  • (Ade, 2015) give atomic positions for WAlB that do not reproduce their interatomic distances and make the W-B distance far too small. We find that the parameters $(y_{Al},y_{B},y_{W}) = (0.19950,0.03547,0.41002)$ reproduce the reported distances.
  • The ICSD entry gives the structure type as UBC, but XtalFinder (Hicks, 2021) finds that the structures are essentially unmatchable.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Al I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Al I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) B I
$\mathbf{B_{4}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) B I
$\mathbf{B_{5}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Mo I
$\mathbf{B_{6}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Mo I

References

  • M. Ade and H. Hillebrecht, Ternary Borides Cr$_{2}$AlB$_{2}$, Cr$_{2}$AlB$_{4}$, and Cr$_{4}$AlB$_{6}$: The First Members of the Series (CrB$_{2}$)$_{n}$CrAl with $n = 1, 2, 3$ and a Unifying Concept for Ternary Borides as MAB-Phases, Inorg. Chem. 54, 6122–6135 (2015), doi:10.1021/acs.inorgchem.5b00049.
  • D. Hicks, C. Toher, D. C. Ford, F. Rose, C. D. Santo, O. Levy, M. J. Mehl, and S. Curtarolo, AFLOW-XtalFinder: a reliable choice to identify crystalline prototypes 7, 30 (2021), doi:10.1038/s41524-020-00483-4.

Found in

  • H. Zhang, J. Kim, R. Su, P. Richardson, J. Xi, E. Kisi, J. O'Connor, L. Shi, and I. Szlufarska, Defect behavior and radiation tolerance of MAB phases (MoAlB and Fe$_{2}$AlB$_{2}$) with comparison to MAX phases, Acta Mater. 196, 505–515 (2020), doi:10.1016/j.actamat.2020.07.002.

Prototype Generator

aflow --proto=ABC_oC12_63_c_c_c --params=$a,b/a,c/a,y_{1},y_{2},y_{3}$

Species:

Running:

Output: