Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC_oI12_71_e_h_f-001

This structure originally had the label ABC_oI12_71_h_j_g. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/B529
or https://aflow.org/p/ABC_oI12_71_e_h_f-001
or PDF Version

NbPS Structure: ABC_oI12_71_e_h_f-001

Picture of Structure; Click for Big Picture
Prototype NbPS
AFLOW prototype label ABC_oI12_71_e_h_f-001
ICSD 16075
Pearson symbol oI12
Space group number 71
Space group symbol $Immm$
AFLOW prototype command aflow --proto=ABC_oI12_71_e_h_f-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{3}$

  • The ICSD lists this as a tenary form of UTe$_{2}$, but the structures are actually rather far apart.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}$ (4e) Nb I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}$ (4e) Nb I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ (4f) S I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ (4f) S I
$\mathbf{B_{5}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) P I
$\mathbf{B_{6}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) P I

References

  • P. C. Donohue and P. E. Bierstedt, Synthesis, crystal structure, and superconducting properties of niobium phosphorus sulfide, niobium phosphorus selenide and tantalum phosphorus sulfide, Inorg. Chem. 8, 2690–2694 (1969), doi:10.1021/ic50082a031.

Prototype Generator

aflow --proto=ABC_oI12_71_e_h_f --params=$a,b/a,c/a,x_{1},x_{2},y_{3}$

Species:

Running:

Output: