Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC_oP6_59_a_a_a-001

This structure originally had the label ABC_oP6_59_a_a_a. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/Z1TY
or https://aflow.org/p/ABC_oP6_59_a_a_a-001
or PDF Version

CNCl Structure: ABC_oP6_59_a_a_a-001

Picture of Structure; Click for Big Picture
Prototype CClN
AFLOW prototype label ABC_oP6_59_a_a_a-001
ICSD 16660
Pearson symbol oP6
Space group number 59
Space group symbol $Pmmn$
AFLOW prototype command aflow --proto=ABC_oP6_59_a_a_a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (2a) C I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (2a) C I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2a) Cl I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (2a) Cl I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2a) N I
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (2a) N I

References

Found in

  • R. W. G. Wyckoff, Crystal Structures (Wiley, 1963), vol. 1, chap. , pp. 173–174, second edn.

Prototype Generator

aflow --proto=ABC_oP6_59_a_a_a --params=$a,b/a,c/a,z_{1},z_{2},z_{3}$

Species:

Running:

Output: