AFLOW Prototype: ABC_tI12_109_a_a_a-001
This structure originally had the label ABC_tI12_109_a_a_a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/RTEY
or
https://aflow.org/p/ABC_tI12_109_a_a_a-001
or
PDF Version
Prototype | LaPtSi |
AFLOW prototype label | ABC_tI12_109_a_a_a-001 |
ICSD | 27224 |
Pearson symbol | tI12 |
Space group number | 109 |
Space group symbol | $I4_1md$ |
AFLOW prototype command |
aflow --proto=ABC_tI12_109_a_a_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}$ |
EuPtAs, CeAlSi, CeIrP, CeNiSi, CePtSi, GdGaSi, LaAlGe, LaAlSi, LaIrP, LaNiSi, LaPrP, LaPtGe, LaRhAs, NdAlSi, NdIrP, NdNiSi, NdPtSi, PrAlGe, PrAlSi, PrIrP, PrPtSi, PtSmSi, SmAlSi
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (4a) | La I |
$\mathbf{B_{2}}$ | = | $\left(z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (4a) | La I |
$\mathbf{B_{3}}$ | = | $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (4a) | Pt I |
$\mathbf{B_{4}}$ | = | $\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (4a) | Pt I |
$\mathbf{B_{5}}$ | = | $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (4a) | Si I |
$\mathbf{B_{6}}$ | = | $\left(z_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (4a) | Si I |