Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_mC256_5_2a2b30c_32c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/J6WY
or https://aflow.org/p/AB_mC256_5_2a2b30c_32c-001
or PDF Version

High Temperature Monoclinic TlS Structure: AB_mC256_5_2a2b30c_32c-001

Picture of Structure; Click for Big Picture
Prototype STl
AFLOW prototype label AB_mC256_5_2a2b30c_32c-001
ICSD 74446
Pearson symbol mC256
Space group number 5
Space group symbol $C2$
AFLOW prototype command aflow --proto=AB_mC256_5_2a2b30c_32c-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak y_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak y_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak y_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak y_{24}, \allowbreak z_{24}, \allowbreak x_{25}, \allowbreak y_{25}, \allowbreak z_{25}, \allowbreak x_{26}, \allowbreak y_{26}, \allowbreak z_{26}, \allowbreak x_{27}, \allowbreak y_{27}, \allowbreak z_{27}, \allowbreak x_{28}, \allowbreak y_{28}, \allowbreak z_{28}, \allowbreak x_{29}, \allowbreak y_{29}, \allowbreak z_{29}, \allowbreak x_{30}, \allowbreak y_{30}, \allowbreak z_{30}, \allowbreak x_{31}, \allowbreak y_{31}, \allowbreak z_{31}, \allowbreak x_{32}, \allowbreak y_{32}, \allowbreak z_{32}, \allowbreak x_{33}, \allowbreak y_{33}, \allowbreak z_{33}, \allowbreak x_{34}, \allowbreak y_{34}, \allowbreak z_{34}, \allowbreak x_{35}, \allowbreak y_{35}, \allowbreak z_{35}, \allowbreak x_{36}, \allowbreak y_{36}, \allowbreak z_{36}, \allowbreak x_{37}, \allowbreak y_{37}, \allowbreak z_{37}, \allowbreak x_{38}, \allowbreak y_{38}, \allowbreak z_{38}, \allowbreak x_{39}, \allowbreak y_{39}, \allowbreak z_{39}, \allowbreak x_{40}, \allowbreak y_{40}, \allowbreak z_{40}, \allowbreak x_{41}, \allowbreak y_{41}, \allowbreak z_{41}, \allowbreak x_{42}, \allowbreak y_{42}, \allowbreak z_{42}, \allowbreak x_{43}, \allowbreak y_{43}, \allowbreak z_{43}, \allowbreak x_{44}, \allowbreak y_{44}, \allowbreak z_{44}, \allowbreak x_{45}, \allowbreak y_{45}, \allowbreak z_{45}, \allowbreak x_{46}, \allowbreak y_{46}, \allowbreak z_{46}, \allowbreak x_{47}, \allowbreak y_{47}, \allowbreak z_{47}, \allowbreak x_{48}, \allowbreak y_{48}, \allowbreak z_{48}, \allowbreak x_{49}, \allowbreak y_{49}, \allowbreak z_{49}, \allowbreak x_{50}, \allowbreak y_{50}, \allowbreak z_{50}, \allowbreak x_{51}, \allowbreak y_{51}, \allowbreak z_{51}, \allowbreak x_{52}, \allowbreak y_{52}, \allowbreak z_{52}, \allowbreak x_{53}, \allowbreak y_{53}, \allowbreak z_{53}, \allowbreak x_{54}, \allowbreak y_{54}, \allowbreak z_{54}, \allowbreak x_{55}, \allowbreak y_{55}, \allowbreak z_{55}, \allowbreak x_{56}, \allowbreak y_{56}, \allowbreak z_{56}, \allowbreak x_{57}, \allowbreak y_{57}, \allowbreak z_{57}, \allowbreak x_{58}, \allowbreak y_{58}, \allowbreak z_{58}, \allowbreak x_{59}, \allowbreak y_{59}, \allowbreak z_{59}, \allowbreak x_{60}, \allowbreak y_{60}, \allowbreak z_{60}, \allowbreak x_{61}, \allowbreak y_{61}, \allowbreak z_{61}, \allowbreak x_{62}, \allowbreak y_{62}, \allowbreak z_{62}, \allowbreak x_{63}, \allowbreak y_{63}, \allowbreak z_{63}, \allowbreak x_{64}, \allowbreak y_{64}, \allowbreak z_{64}, \allowbreak x_{65}, \allowbreak y_{65}, \allowbreak z_{65}, \allowbreak x_{66}, \allowbreak y_{66}, \allowbreak z_{66}$

  • TlS occurs naturally in three forms (Villars, 2018):
    • The ground state is tetragonal in the TlSe ($B37$) structure which (Villars, 2018) calls Tet-I and (Kishida, 1994) calls Type I.
    • An intermediate tetragonal structure, which (Villars, 2018) calls Tetragonal II, and (Kashida, 1994) calls Type III.
    • A high temperature monoclinic structure, called Mon by (Villars, 2018) and Type II by (Kishida, 1994). (this structure)
  • If we replaced the conventional cell primitive vector ${\bf a}_3$ used by (Nakamura, 1993) with ${\bf a}_3' = {\bf a}_1 + {\bf a}_3$ both the conventional and primitive cells would be very close to tetragonal cells.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}$ = $b y_{1} \,\mathbf{\hat{y}}$ (2a) S I
$\mathbf{B_{2}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}$ = $b y_{2} \,\mathbf{\hat{y}}$ (2a) S II
$\mathbf{B_{3}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (2b) S III
$\mathbf{B_{4}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (2b) S IV
$\mathbf{B_{5}}$ = $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S V
$\mathbf{B_{6}}$ = $- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S V
$\mathbf{B_{7}}$ = $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S VI
$\mathbf{B_{8}}$ = $- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S VI
$\mathbf{B_{9}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S VII
$\mathbf{B_{10}}$ = $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S VII
$\mathbf{B_{11}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S VIII
$\mathbf{B_{12}}$ = $- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S VIII
$\mathbf{B_{13}}$ = $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S IX
$\mathbf{B_{14}}$ = $- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S IX
$\mathbf{B_{15}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S X
$\mathbf{B_{16}}$ = $- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S X
$\mathbf{B_{17}}$ = $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XI
$\mathbf{B_{18}}$ = $- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XI
$\mathbf{B_{19}}$ = $\left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XII
$\mathbf{B_{20}}$ = $- \left(x_{12} + y_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- \left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}- c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XII
$\mathbf{B_{21}}$ = $\left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XIII
$\mathbf{B_{22}}$ = $- \left(x_{13} + y_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- \left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}- c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XIII
$\mathbf{B_{23}}$ = $\left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XIV
$\mathbf{B_{24}}$ = $- \left(x_{14} + y_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- \left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}- c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XIV
$\mathbf{B_{25}}$ = $\left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}+\left(x_{15} + y_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XV
$\mathbf{B_{26}}$ = $- \left(x_{15} + y_{15}\right) \, \mathbf{a}_{1}- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- \left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}- c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XV
$\mathbf{B_{27}}$ = $\left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}+\left(x_{16} + y_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}+c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XVI
$\mathbf{B_{28}}$ = $- \left(x_{16} + y_{16}\right) \, \mathbf{a}_{1}- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- \left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}- c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XVI
$\mathbf{B_{29}}$ = $\left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} + y_{17}\right) \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}+c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XVII
$\mathbf{B_{30}}$ = $- \left(x_{17} + y_{17}\right) \, \mathbf{a}_{1}- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- \left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}- c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XVII
$\mathbf{B_{31}}$ = $\left(x_{18} - y_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} + y_{18}\right) \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}+c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XVIII
$\mathbf{B_{32}}$ = $- \left(x_{18} + y_{18}\right) \, \mathbf{a}_{1}- \left(x_{18} - y_{18}\right) \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $- \left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}- c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XVIII
$\mathbf{B_{33}}$ = $\left(x_{19} - y_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} + y_{19}\right) \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $\left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}+c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XIX
$\mathbf{B_{34}}$ = $- \left(x_{19} + y_{19}\right) \, \mathbf{a}_{1}- \left(x_{19} - y_{19}\right) \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- \left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}- c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XIX
$\mathbf{B_{35}}$ = $\left(x_{20} - y_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} + y_{20}\right) \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $\left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}+c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XX
$\mathbf{B_{36}}$ = $- \left(x_{20} + y_{20}\right) \, \mathbf{a}_{1}- \left(x_{20} - y_{20}\right) \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $- \left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}- c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XX
$\mathbf{B_{37}}$ = $\left(x_{21} - y_{21}\right) \, \mathbf{a}_{1}+\left(x_{21} + y_{21}\right) \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $\left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}+c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXI
$\mathbf{B_{38}}$ = $- \left(x_{21} + y_{21}\right) \, \mathbf{a}_{1}- \left(x_{21} - y_{21}\right) \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $- \left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}- c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXI
$\mathbf{B_{39}}$ = $\left(x_{22} - y_{22}\right) \, \mathbf{a}_{1}+\left(x_{22} + y_{22}\right) \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $\left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}+c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXII
$\mathbf{B_{40}}$ = $- \left(x_{22} + y_{22}\right) \, \mathbf{a}_{1}- \left(x_{22} - y_{22}\right) \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $- \left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}- c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXII
$\mathbf{B_{41}}$ = $\left(x_{23} - y_{23}\right) \, \mathbf{a}_{1}+\left(x_{23} + y_{23}\right) \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $\left(a x_{23} + c z_{23} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{23} \,\mathbf{\hat{y}}+c z_{23} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXIII
$\mathbf{B_{42}}$ = $- \left(x_{23} + y_{23}\right) \, \mathbf{a}_{1}- \left(x_{23} - y_{23}\right) \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $- \left(a x_{23} + c z_{23} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{23} \,\mathbf{\hat{y}}- c z_{23} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXIII
$\mathbf{B_{43}}$ = $\left(x_{24} - y_{24}\right) \, \mathbf{a}_{1}+\left(x_{24} + y_{24}\right) \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\left(a x_{24} + c z_{24} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{24} \,\mathbf{\hat{y}}+c z_{24} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXIV
$\mathbf{B_{44}}$ = $- \left(x_{24} + y_{24}\right) \, \mathbf{a}_{1}- \left(x_{24} - y_{24}\right) \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $- \left(a x_{24} + c z_{24} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{24} \,\mathbf{\hat{y}}- c z_{24} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXIV
$\mathbf{B_{45}}$ = $\left(x_{25} - y_{25}\right) \, \mathbf{a}_{1}+\left(x_{25} + y_{25}\right) \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\left(a x_{25} + c z_{25} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{25} \,\mathbf{\hat{y}}+c z_{25} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXV
$\mathbf{B_{46}}$ = $- \left(x_{25} + y_{25}\right) \, \mathbf{a}_{1}- \left(x_{25} - y_{25}\right) \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ = $- \left(a x_{25} + c z_{25} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{25} \,\mathbf{\hat{y}}- c z_{25} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXV
$\mathbf{B_{47}}$ = $\left(x_{26} - y_{26}\right) \, \mathbf{a}_{1}+\left(x_{26} + y_{26}\right) \, \mathbf{a}_{2}+z_{26} \, \mathbf{a}_{3}$ = $\left(a x_{26} + c z_{26} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{26} \,\mathbf{\hat{y}}+c z_{26} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXVI
$\mathbf{B_{48}}$ = $- \left(x_{26} + y_{26}\right) \, \mathbf{a}_{1}- \left(x_{26} - y_{26}\right) \, \mathbf{a}_{2}- z_{26} \, \mathbf{a}_{3}$ = $- \left(a x_{26} + c z_{26} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{26} \,\mathbf{\hat{y}}- c z_{26} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXVI
$\mathbf{B_{49}}$ = $\left(x_{27} - y_{27}\right) \, \mathbf{a}_{1}+\left(x_{27} + y_{27}\right) \, \mathbf{a}_{2}+z_{27} \, \mathbf{a}_{3}$ = $\left(a x_{27} + c z_{27} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{27} \,\mathbf{\hat{y}}+c z_{27} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXVII
$\mathbf{B_{50}}$ = $- \left(x_{27} + y_{27}\right) \, \mathbf{a}_{1}- \left(x_{27} - y_{27}\right) \, \mathbf{a}_{2}- z_{27} \, \mathbf{a}_{3}$ = $- \left(a x_{27} + c z_{27} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{27} \,\mathbf{\hat{y}}- c z_{27} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXVII
$\mathbf{B_{51}}$ = $\left(x_{28} - y_{28}\right) \, \mathbf{a}_{1}+\left(x_{28} + y_{28}\right) \, \mathbf{a}_{2}+z_{28} \, \mathbf{a}_{3}$ = $\left(a x_{28} + c z_{28} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{28} \,\mathbf{\hat{y}}+c z_{28} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXVIII
$\mathbf{B_{52}}$ = $- \left(x_{28} + y_{28}\right) \, \mathbf{a}_{1}- \left(x_{28} - y_{28}\right) \, \mathbf{a}_{2}- z_{28} \, \mathbf{a}_{3}$ = $- \left(a x_{28} + c z_{28} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{28} \,\mathbf{\hat{y}}- c z_{28} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXVIII
$\mathbf{B_{53}}$ = $\left(x_{29} - y_{29}\right) \, \mathbf{a}_{1}+\left(x_{29} + y_{29}\right) \, \mathbf{a}_{2}+z_{29} \, \mathbf{a}_{3}$ = $\left(a x_{29} + c z_{29} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{29} \,\mathbf{\hat{y}}+c z_{29} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXIX
$\mathbf{B_{54}}$ = $- \left(x_{29} + y_{29}\right) \, \mathbf{a}_{1}- \left(x_{29} - y_{29}\right) \, \mathbf{a}_{2}- z_{29} \, \mathbf{a}_{3}$ = $- \left(a x_{29} + c z_{29} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{29} \,\mathbf{\hat{y}}- c z_{29} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXIX
$\mathbf{B_{55}}$ = $\left(x_{30} - y_{30}\right) \, \mathbf{a}_{1}+\left(x_{30} + y_{30}\right) \, \mathbf{a}_{2}+z_{30} \, \mathbf{a}_{3}$ = $\left(a x_{30} + c z_{30} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{30} \,\mathbf{\hat{y}}+c z_{30} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXX
$\mathbf{B_{56}}$ = $- \left(x_{30} + y_{30}\right) \, \mathbf{a}_{1}- \left(x_{30} - y_{30}\right) \, \mathbf{a}_{2}- z_{30} \, \mathbf{a}_{3}$ = $- \left(a x_{30} + c z_{30} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{30} \,\mathbf{\hat{y}}- c z_{30} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXX
$\mathbf{B_{57}}$ = $\left(x_{31} - y_{31}\right) \, \mathbf{a}_{1}+\left(x_{31} + y_{31}\right) \, \mathbf{a}_{2}+z_{31} \, \mathbf{a}_{3}$ = $\left(a x_{31} + c z_{31} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{31} \,\mathbf{\hat{y}}+c z_{31} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXXI
$\mathbf{B_{58}}$ = $- \left(x_{31} + y_{31}\right) \, \mathbf{a}_{1}- \left(x_{31} - y_{31}\right) \, \mathbf{a}_{2}- z_{31} \, \mathbf{a}_{3}$ = $- \left(a x_{31} + c z_{31} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{31} \,\mathbf{\hat{y}}- c z_{31} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXXI
$\mathbf{B_{59}}$ = $\left(x_{32} - y_{32}\right) \, \mathbf{a}_{1}+\left(x_{32} + y_{32}\right) \, \mathbf{a}_{2}+z_{32} \, \mathbf{a}_{3}$ = $\left(a x_{32} + c z_{32} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{32} \,\mathbf{\hat{y}}+c z_{32} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXXII
$\mathbf{B_{60}}$ = $- \left(x_{32} + y_{32}\right) \, \mathbf{a}_{1}- \left(x_{32} - y_{32}\right) \, \mathbf{a}_{2}- z_{32} \, \mathbf{a}_{3}$ = $- \left(a x_{32} + c z_{32} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{32} \,\mathbf{\hat{y}}- c z_{32} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXXII
$\mathbf{B_{61}}$ = $\left(x_{33} - y_{33}\right) \, \mathbf{a}_{1}+\left(x_{33} + y_{33}\right) \, \mathbf{a}_{2}+z_{33} \, \mathbf{a}_{3}$ = $\left(a x_{33} + c z_{33} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{33} \,\mathbf{\hat{y}}+c z_{33} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXXIII
$\mathbf{B_{62}}$ = $- \left(x_{33} + y_{33}\right) \, \mathbf{a}_{1}- \left(x_{33} - y_{33}\right) \, \mathbf{a}_{2}- z_{33} \, \mathbf{a}_{3}$ = $- \left(a x_{33} + c z_{33} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{33} \,\mathbf{\hat{y}}- c z_{33} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXXIII
$\mathbf{B_{63}}$ = $\left(x_{34} - y_{34}\right) \, \mathbf{a}_{1}+\left(x_{34} + y_{34}\right) \, \mathbf{a}_{2}+z_{34} \, \mathbf{a}_{3}$ = $\left(a x_{34} + c z_{34} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{34} \,\mathbf{\hat{y}}+c z_{34} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXXIV
$\mathbf{B_{64}}$ = $- \left(x_{34} + y_{34}\right) \, \mathbf{a}_{1}- \left(x_{34} - y_{34}\right) \, \mathbf{a}_{2}- z_{34} \, \mathbf{a}_{3}$ = $- \left(a x_{34} + c z_{34} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{34} \,\mathbf{\hat{y}}- c z_{34} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) S XXXIV
$\mathbf{B_{65}}$ = $\left(x_{35} - y_{35}\right) \, \mathbf{a}_{1}+\left(x_{35} + y_{35}\right) \, \mathbf{a}_{2}+z_{35} \, \mathbf{a}_{3}$ = $\left(a x_{35} + c z_{35} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{35} \,\mathbf{\hat{y}}+c z_{35} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl I
$\mathbf{B_{66}}$ = $- \left(x_{35} + y_{35}\right) \, \mathbf{a}_{1}- \left(x_{35} - y_{35}\right) \, \mathbf{a}_{2}- z_{35} \, \mathbf{a}_{3}$ = $- \left(a x_{35} + c z_{35} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{35} \,\mathbf{\hat{y}}- c z_{35} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl I
$\mathbf{B_{67}}$ = $\left(x_{36} - y_{36}\right) \, \mathbf{a}_{1}+\left(x_{36} + y_{36}\right) \, \mathbf{a}_{2}+z_{36} \, \mathbf{a}_{3}$ = $\left(a x_{36} + c z_{36} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{36} \,\mathbf{\hat{y}}+c z_{36} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl II
$\mathbf{B_{68}}$ = $- \left(x_{36} + y_{36}\right) \, \mathbf{a}_{1}- \left(x_{36} - y_{36}\right) \, \mathbf{a}_{2}- z_{36} \, \mathbf{a}_{3}$ = $- \left(a x_{36} + c z_{36} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{36} \,\mathbf{\hat{y}}- c z_{36} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl II
$\mathbf{B_{69}}$ = $\left(x_{37} - y_{37}\right) \, \mathbf{a}_{1}+\left(x_{37} + y_{37}\right) \, \mathbf{a}_{2}+z_{37} \, \mathbf{a}_{3}$ = $\left(a x_{37} + c z_{37} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{37} \,\mathbf{\hat{y}}+c z_{37} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl III
$\mathbf{B_{70}}$ = $- \left(x_{37} + y_{37}\right) \, \mathbf{a}_{1}- \left(x_{37} - y_{37}\right) \, \mathbf{a}_{2}- z_{37} \, \mathbf{a}_{3}$ = $- \left(a x_{37} + c z_{37} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{37} \,\mathbf{\hat{y}}- c z_{37} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl III
$\mathbf{B_{71}}$ = $\left(x_{38} - y_{38}\right) \, \mathbf{a}_{1}+\left(x_{38} + y_{38}\right) \, \mathbf{a}_{2}+z_{38} \, \mathbf{a}_{3}$ = $\left(a x_{38} + c z_{38} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{38} \,\mathbf{\hat{y}}+c z_{38} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl IV
$\mathbf{B_{72}}$ = $- \left(x_{38} + y_{38}\right) \, \mathbf{a}_{1}- \left(x_{38} - y_{38}\right) \, \mathbf{a}_{2}- z_{38} \, \mathbf{a}_{3}$ = $- \left(a x_{38} + c z_{38} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{38} \,\mathbf{\hat{y}}- c z_{38} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl IV
$\mathbf{B_{73}}$ = $\left(x_{39} - y_{39}\right) \, \mathbf{a}_{1}+\left(x_{39} + y_{39}\right) \, \mathbf{a}_{2}+z_{39} \, \mathbf{a}_{3}$ = $\left(a x_{39} + c z_{39} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{39} \,\mathbf{\hat{y}}+c z_{39} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl V
$\mathbf{B_{74}}$ = $- \left(x_{39} + y_{39}\right) \, \mathbf{a}_{1}- \left(x_{39} - y_{39}\right) \, \mathbf{a}_{2}- z_{39} \, \mathbf{a}_{3}$ = $- \left(a x_{39} + c z_{39} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{39} \,\mathbf{\hat{y}}- c z_{39} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl V
$\mathbf{B_{75}}$ = $\left(x_{40} - y_{40}\right) \, \mathbf{a}_{1}+\left(x_{40} + y_{40}\right) \, \mathbf{a}_{2}+z_{40} \, \mathbf{a}_{3}$ = $\left(a x_{40} + c z_{40} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{40} \,\mathbf{\hat{y}}+c z_{40} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl VI
$\mathbf{B_{76}}$ = $- \left(x_{40} + y_{40}\right) \, \mathbf{a}_{1}- \left(x_{40} - y_{40}\right) \, \mathbf{a}_{2}- z_{40} \, \mathbf{a}_{3}$ = $- \left(a x_{40} + c z_{40} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{40} \,\mathbf{\hat{y}}- c z_{40} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl VI
$\mathbf{B_{77}}$ = $\left(x_{41} - y_{41}\right) \, \mathbf{a}_{1}+\left(x_{41} + y_{41}\right) \, \mathbf{a}_{2}+z_{41} \, \mathbf{a}_{3}$ = $\left(a x_{41} + c z_{41} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{41} \,\mathbf{\hat{y}}+c z_{41} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl VII
$\mathbf{B_{78}}$ = $- \left(x_{41} + y_{41}\right) \, \mathbf{a}_{1}- \left(x_{41} - y_{41}\right) \, \mathbf{a}_{2}- z_{41} \, \mathbf{a}_{3}$ = $- \left(a x_{41} + c z_{41} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{41} \,\mathbf{\hat{y}}- c z_{41} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl VII
$\mathbf{B_{79}}$ = $\left(x_{42} - y_{42}\right) \, \mathbf{a}_{1}+\left(x_{42} + y_{42}\right) \, \mathbf{a}_{2}+z_{42} \, \mathbf{a}_{3}$ = $\left(a x_{42} + c z_{42} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{42} \,\mathbf{\hat{y}}+c z_{42} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl VIII
$\mathbf{B_{80}}$ = $- \left(x_{42} + y_{42}\right) \, \mathbf{a}_{1}- \left(x_{42} - y_{42}\right) \, \mathbf{a}_{2}- z_{42} \, \mathbf{a}_{3}$ = $- \left(a x_{42} + c z_{42} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{42} \,\mathbf{\hat{y}}- c z_{42} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl VIII
$\mathbf{B_{81}}$ = $\left(x_{43} - y_{43}\right) \, \mathbf{a}_{1}+\left(x_{43} + y_{43}\right) \, \mathbf{a}_{2}+z_{43} \, \mathbf{a}_{3}$ = $\left(a x_{43} + c z_{43} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{43} \,\mathbf{\hat{y}}+c z_{43} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl IX
$\mathbf{B_{82}}$ = $- \left(x_{43} + y_{43}\right) \, \mathbf{a}_{1}- \left(x_{43} - y_{43}\right) \, \mathbf{a}_{2}- z_{43} \, \mathbf{a}_{3}$ = $- \left(a x_{43} + c z_{43} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{43} \,\mathbf{\hat{y}}- c z_{43} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl IX
$\mathbf{B_{83}}$ = $\left(x_{44} - y_{44}\right) \, \mathbf{a}_{1}+\left(x_{44} + y_{44}\right) \, \mathbf{a}_{2}+z_{44} \, \mathbf{a}_{3}$ = $\left(a x_{44} + c z_{44} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{44} \,\mathbf{\hat{y}}+c z_{44} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl X
$\mathbf{B_{84}}$ = $- \left(x_{44} + y_{44}\right) \, \mathbf{a}_{1}- \left(x_{44} - y_{44}\right) \, \mathbf{a}_{2}- z_{44} \, \mathbf{a}_{3}$ = $- \left(a x_{44} + c z_{44} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{44} \,\mathbf{\hat{y}}- c z_{44} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl X
$\mathbf{B_{85}}$ = $\left(x_{45} - y_{45}\right) \, \mathbf{a}_{1}+\left(x_{45} + y_{45}\right) \, \mathbf{a}_{2}+z_{45} \, \mathbf{a}_{3}$ = $\left(a x_{45} + c z_{45} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{45} \,\mathbf{\hat{y}}+c z_{45} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XI
$\mathbf{B_{86}}$ = $- \left(x_{45} + y_{45}\right) \, \mathbf{a}_{1}- \left(x_{45} - y_{45}\right) \, \mathbf{a}_{2}- z_{45} \, \mathbf{a}_{3}$ = $- \left(a x_{45} + c z_{45} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{45} \,\mathbf{\hat{y}}- c z_{45} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XI
$\mathbf{B_{87}}$ = $\left(x_{46} - y_{46}\right) \, \mathbf{a}_{1}+\left(x_{46} + y_{46}\right) \, \mathbf{a}_{2}+z_{46} \, \mathbf{a}_{3}$ = $\left(a x_{46} + c z_{46} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{46} \,\mathbf{\hat{y}}+c z_{46} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XII
$\mathbf{B_{88}}$ = $- \left(x_{46} + y_{46}\right) \, \mathbf{a}_{1}- \left(x_{46} - y_{46}\right) \, \mathbf{a}_{2}- z_{46} \, \mathbf{a}_{3}$ = $- \left(a x_{46} + c z_{46} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{46} \,\mathbf{\hat{y}}- c z_{46} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XII
$\mathbf{B_{89}}$ = $\left(x_{47} - y_{47}\right) \, \mathbf{a}_{1}+\left(x_{47} + y_{47}\right) \, \mathbf{a}_{2}+z_{47} \, \mathbf{a}_{3}$ = $\left(a x_{47} + c z_{47} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{47} \,\mathbf{\hat{y}}+c z_{47} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XIII
$\mathbf{B_{90}}$ = $- \left(x_{47} + y_{47}\right) \, \mathbf{a}_{1}- \left(x_{47} - y_{47}\right) \, \mathbf{a}_{2}- z_{47} \, \mathbf{a}_{3}$ = $- \left(a x_{47} + c z_{47} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{47} \,\mathbf{\hat{y}}- c z_{47} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XIII
$\mathbf{B_{91}}$ = $\left(x_{48} - y_{48}\right) \, \mathbf{a}_{1}+\left(x_{48} + y_{48}\right) \, \mathbf{a}_{2}+z_{48} \, \mathbf{a}_{3}$ = $\left(a x_{48} + c z_{48} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{48} \,\mathbf{\hat{y}}+c z_{48} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XIV
$\mathbf{B_{92}}$ = $- \left(x_{48} + y_{48}\right) \, \mathbf{a}_{1}- \left(x_{48} - y_{48}\right) \, \mathbf{a}_{2}- z_{48} \, \mathbf{a}_{3}$ = $- \left(a x_{48} + c z_{48} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{48} \,\mathbf{\hat{y}}- c z_{48} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XIV
$\mathbf{B_{93}}$ = $\left(x_{49} - y_{49}\right) \, \mathbf{a}_{1}+\left(x_{49} + y_{49}\right) \, \mathbf{a}_{2}+z_{49} \, \mathbf{a}_{3}$ = $\left(a x_{49} + c z_{49} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{49} \,\mathbf{\hat{y}}+c z_{49} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XV
$\mathbf{B_{94}}$ = $- \left(x_{49} + y_{49}\right) \, \mathbf{a}_{1}- \left(x_{49} - y_{49}\right) \, \mathbf{a}_{2}- z_{49} \, \mathbf{a}_{3}$ = $- \left(a x_{49} + c z_{49} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{49} \,\mathbf{\hat{y}}- c z_{49} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XV
$\mathbf{B_{95}}$ = $\left(x_{50} - y_{50}\right) \, \mathbf{a}_{1}+\left(x_{50} + y_{50}\right) \, \mathbf{a}_{2}+z_{50} \, \mathbf{a}_{3}$ = $\left(a x_{50} + c z_{50} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{50} \,\mathbf{\hat{y}}+c z_{50} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XVI
$\mathbf{B_{96}}$ = $- \left(x_{50} + y_{50}\right) \, \mathbf{a}_{1}- \left(x_{50} - y_{50}\right) \, \mathbf{a}_{2}- z_{50} \, \mathbf{a}_{3}$ = $- \left(a x_{50} + c z_{50} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{50} \,\mathbf{\hat{y}}- c z_{50} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XVI
$\mathbf{B_{97}}$ = $\left(x_{51} - y_{51}\right) \, \mathbf{a}_{1}+\left(x_{51} + y_{51}\right) \, \mathbf{a}_{2}+z_{51} \, \mathbf{a}_{3}$ = $\left(a x_{51} + c z_{51} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{51} \,\mathbf{\hat{y}}+c z_{51} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XVII
$\mathbf{B_{98}}$ = $- \left(x_{51} + y_{51}\right) \, \mathbf{a}_{1}- \left(x_{51} - y_{51}\right) \, \mathbf{a}_{2}- z_{51} \, \mathbf{a}_{3}$ = $- \left(a x_{51} + c z_{51} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{51} \,\mathbf{\hat{y}}- c z_{51} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XVII
$\mathbf{B_{99}}$ = $\left(x_{52} - y_{52}\right) \, \mathbf{a}_{1}+\left(x_{52} + y_{52}\right) \, \mathbf{a}_{2}+z_{52} \, \mathbf{a}_{3}$ = $\left(a x_{52} + c z_{52} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{52} \,\mathbf{\hat{y}}+c z_{52} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XVIII
$\mathbf{B_{100}}$ = $- \left(x_{52} + y_{52}\right) \, \mathbf{a}_{1}- \left(x_{52} - y_{52}\right) \, \mathbf{a}_{2}- z_{52} \, \mathbf{a}_{3}$ = $- \left(a x_{52} + c z_{52} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{52} \,\mathbf{\hat{y}}- c z_{52} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XVIII
$\mathbf{B_{101}}$ = $\left(x_{53} - y_{53}\right) \, \mathbf{a}_{1}+\left(x_{53} + y_{53}\right) \, \mathbf{a}_{2}+z_{53} \, \mathbf{a}_{3}$ = $\left(a x_{53} + c z_{53} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{53} \,\mathbf{\hat{y}}+c z_{53} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XIX
$\mathbf{B_{102}}$ = $- \left(x_{53} + y_{53}\right) \, \mathbf{a}_{1}- \left(x_{53} - y_{53}\right) \, \mathbf{a}_{2}- z_{53} \, \mathbf{a}_{3}$ = $- \left(a x_{53} + c z_{53} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{53} \,\mathbf{\hat{y}}- c z_{53} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XIX
$\mathbf{B_{103}}$ = $\left(x_{54} - y_{54}\right) \, \mathbf{a}_{1}+\left(x_{54} + y_{54}\right) \, \mathbf{a}_{2}+z_{54} \, \mathbf{a}_{3}$ = $\left(a x_{54} + c z_{54} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{54} \,\mathbf{\hat{y}}+c z_{54} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XX
$\mathbf{B_{104}}$ = $- \left(x_{54} + y_{54}\right) \, \mathbf{a}_{1}- \left(x_{54} - y_{54}\right) \, \mathbf{a}_{2}- z_{54} \, \mathbf{a}_{3}$ = $- \left(a x_{54} + c z_{54} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{54} \,\mathbf{\hat{y}}- c z_{54} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XX
$\mathbf{B_{105}}$ = $\left(x_{55} - y_{55}\right) \, \mathbf{a}_{1}+\left(x_{55} + y_{55}\right) \, \mathbf{a}_{2}+z_{55} \, \mathbf{a}_{3}$ = $\left(a x_{55} + c z_{55} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{55} \,\mathbf{\hat{y}}+c z_{55} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXI
$\mathbf{B_{106}}$ = $- \left(x_{55} + y_{55}\right) \, \mathbf{a}_{1}- \left(x_{55} - y_{55}\right) \, \mathbf{a}_{2}- z_{55} \, \mathbf{a}_{3}$ = $- \left(a x_{55} + c z_{55} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{55} \,\mathbf{\hat{y}}- c z_{55} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXI
$\mathbf{B_{107}}$ = $\left(x_{56} - y_{56}\right) \, \mathbf{a}_{1}+\left(x_{56} + y_{56}\right) \, \mathbf{a}_{2}+z_{56} \, \mathbf{a}_{3}$ = $\left(a x_{56} + c z_{56} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{56} \,\mathbf{\hat{y}}+c z_{56} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXII
$\mathbf{B_{108}}$ = $- \left(x_{56} + y_{56}\right) \, \mathbf{a}_{1}- \left(x_{56} - y_{56}\right) \, \mathbf{a}_{2}- z_{56} \, \mathbf{a}_{3}$ = $- \left(a x_{56} + c z_{56} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{56} \,\mathbf{\hat{y}}- c z_{56} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXII
$\mathbf{B_{109}}$ = $\left(x_{57} - y_{57}\right) \, \mathbf{a}_{1}+\left(x_{57} + y_{57}\right) \, \mathbf{a}_{2}+z_{57} \, \mathbf{a}_{3}$ = $\left(a x_{57} + c z_{57} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{57} \,\mathbf{\hat{y}}+c z_{57} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXIII
$\mathbf{B_{110}}$ = $- \left(x_{57} + y_{57}\right) \, \mathbf{a}_{1}- \left(x_{57} - y_{57}\right) \, \mathbf{a}_{2}- z_{57} \, \mathbf{a}_{3}$ = $- \left(a x_{57} + c z_{57} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{57} \,\mathbf{\hat{y}}- c z_{57} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXIII
$\mathbf{B_{111}}$ = $\left(x_{58} - y_{58}\right) \, \mathbf{a}_{1}+\left(x_{58} + y_{58}\right) \, \mathbf{a}_{2}+z_{58} \, \mathbf{a}_{3}$ = $\left(a x_{58} + c z_{58} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{58} \,\mathbf{\hat{y}}+c z_{58} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXIV
$\mathbf{B_{112}}$ = $- \left(x_{58} + y_{58}\right) \, \mathbf{a}_{1}- \left(x_{58} - y_{58}\right) \, \mathbf{a}_{2}- z_{58} \, \mathbf{a}_{3}$ = $- \left(a x_{58} + c z_{58} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{58} \,\mathbf{\hat{y}}- c z_{58} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXIV
$\mathbf{B_{113}}$ = $\left(x_{59} - y_{59}\right) \, \mathbf{a}_{1}+\left(x_{59} + y_{59}\right) \, \mathbf{a}_{2}+z_{59} \, \mathbf{a}_{3}$ = $\left(a x_{59} + c z_{59} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{59} \,\mathbf{\hat{y}}+c z_{59} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXV
$\mathbf{B_{114}}$ = $- \left(x_{59} + y_{59}\right) \, \mathbf{a}_{1}- \left(x_{59} - y_{59}\right) \, \mathbf{a}_{2}- z_{59} \, \mathbf{a}_{3}$ = $- \left(a x_{59} + c z_{59} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{59} \,\mathbf{\hat{y}}- c z_{59} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXV
$\mathbf{B_{115}}$ = $\left(x_{60} - y_{60}\right) \, \mathbf{a}_{1}+\left(x_{60} + y_{60}\right) \, \mathbf{a}_{2}+z_{60} \, \mathbf{a}_{3}$ = $\left(a x_{60} + c z_{60} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{60} \,\mathbf{\hat{y}}+c z_{60} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXVI
$\mathbf{B_{116}}$ = $- \left(x_{60} + y_{60}\right) \, \mathbf{a}_{1}- \left(x_{60} - y_{60}\right) \, \mathbf{a}_{2}- z_{60} \, \mathbf{a}_{3}$ = $- \left(a x_{60} + c z_{60} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{60} \,\mathbf{\hat{y}}- c z_{60} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXVI
$\mathbf{B_{117}}$ = $\left(x_{61} - y_{61}\right) \, \mathbf{a}_{1}+\left(x_{61} + y_{61}\right) \, \mathbf{a}_{2}+z_{61} \, \mathbf{a}_{3}$ = $\left(a x_{61} + c z_{61} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{61} \,\mathbf{\hat{y}}+c z_{61} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXVII
$\mathbf{B_{118}}$ = $- \left(x_{61} + y_{61}\right) \, \mathbf{a}_{1}- \left(x_{61} - y_{61}\right) \, \mathbf{a}_{2}- z_{61} \, \mathbf{a}_{3}$ = $- \left(a x_{61} + c z_{61} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{61} \,\mathbf{\hat{y}}- c z_{61} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXVII
$\mathbf{B_{119}}$ = $\left(x_{62} - y_{62}\right) \, \mathbf{a}_{1}+\left(x_{62} + y_{62}\right) \, \mathbf{a}_{2}+z_{62} \, \mathbf{a}_{3}$ = $\left(a x_{62} + c z_{62} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{62} \,\mathbf{\hat{y}}+c z_{62} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXVIII
$\mathbf{B_{120}}$ = $- \left(x_{62} + y_{62}\right) \, \mathbf{a}_{1}- \left(x_{62} - y_{62}\right) \, \mathbf{a}_{2}- z_{62} \, \mathbf{a}_{3}$ = $- \left(a x_{62} + c z_{62} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{62} \,\mathbf{\hat{y}}- c z_{62} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXVIII
$\mathbf{B_{121}}$ = $\left(x_{63} - y_{63}\right) \, \mathbf{a}_{1}+\left(x_{63} + y_{63}\right) \, \mathbf{a}_{2}+z_{63} \, \mathbf{a}_{3}$ = $\left(a x_{63} + c z_{63} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{63} \,\mathbf{\hat{y}}+c z_{63} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXIX
$\mathbf{B_{122}}$ = $- \left(x_{63} + y_{63}\right) \, \mathbf{a}_{1}- \left(x_{63} - y_{63}\right) \, \mathbf{a}_{2}- z_{63} \, \mathbf{a}_{3}$ = $- \left(a x_{63} + c z_{63} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{63} \,\mathbf{\hat{y}}- c z_{63} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXIX
$\mathbf{B_{123}}$ = $\left(x_{64} - y_{64}\right) \, \mathbf{a}_{1}+\left(x_{64} + y_{64}\right) \, \mathbf{a}_{2}+z_{64} \, \mathbf{a}_{3}$ = $\left(a x_{64} + c z_{64} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{64} \,\mathbf{\hat{y}}+c z_{64} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXX
$\mathbf{B_{124}}$ = $- \left(x_{64} + y_{64}\right) \, \mathbf{a}_{1}- \left(x_{64} - y_{64}\right) \, \mathbf{a}_{2}- z_{64} \, \mathbf{a}_{3}$ = $- \left(a x_{64} + c z_{64} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{64} \,\mathbf{\hat{y}}- c z_{64} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXX
$\mathbf{B_{125}}$ = $\left(x_{65} - y_{65}\right) \, \mathbf{a}_{1}+\left(x_{65} + y_{65}\right) \, \mathbf{a}_{2}+z_{65} \, \mathbf{a}_{3}$ = $\left(a x_{65} + c z_{65} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{65} \,\mathbf{\hat{y}}+c z_{65} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXXI
$\mathbf{B_{126}}$ = $- \left(x_{65} + y_{65}\right) \, \mathbf{a}_{1}- \left(x_{65} - y_{65}\right) \, \mathbf{a}_{2}- z_{65} \, \mathbf{a}_{3}$ = $- \left(a x_{65} + c z_{65} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{65} \,\mathbf{\hat{y}}- c z_{65} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXXI
$\mathbf{B_{127}}$ = $\left(x_{66} - y_{66}\right) \, \mathbf{a}_{1}+\left(x_{66} + y_{66}\right) \, \mathbf{a}_{2}+z_{66} \, \mathbf{a}_{3}$ = $\left(a x_{66} + c z_{66} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{66} \,\mathbf{\hat{y}}+c z_{66} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXXII
$\mathbf{B_{128}}$ = $- \left(x_{66} + y_{66}\right) \, \mathbf{a}_{1}- \left(x_{66} - y_{66}\right) \, \mathbf{a}_{2}- z_{66} \, \mathbf{a}_{3}$ = $- \left(a x_{66} + c z_{66} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{66} \,\mathbf{\hat{y}}- c z_{66} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Tl XXXII

References

  • K. Nakamura and S. Kashida, X-Ray Study of the Room Temperature Structure in Monoclinic TlS, J. Phys. Soc. Jpn. 62, 3135–3141 (1993), doi:10.1143/JPSJ.62.3135.
  • S. Kashida and K. Nakamura, An X-Ray Study of the Polymorphism in Thallium Monosulfide: The Structure of Two Tetragonal Forms, J. Solid State Chem. 110, 264–269 (1994), doi:10.1006/jssc.1994.1168.

Found in

  • P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. Sulfur-Thallium Binary Phase Diagram (1990 Okamoto H.). Copyright © 2006-2018 ASM International.

Prototype Generator

aflow --proto=AB_mC256_5_2a2b30c_32c --params=$a,b/a,c/a,\beta,y_{1},y_{2},y_{3},y_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18},x_{19},y_{19},z_{19},x_{20},y_{20},z_{20},x_{21},y_{21},z_{21},x_{22},y_{22},z_{22},x_{23},y_{23},z_{23},x_{24},y_{24},z_{24},x_{25},y_{25},z_{25},x_{26},y_{26},z_{26},x_{27},y_{27},z_{27},x_{28},y_{28},z_{28},x_{29},y_{29},z_{29},x_{30},y_{30},z_{30},x_{31},y_{31},z_{31},x_{32},y_{32},z_{32},x_{33},y_{33},z_{33},x_{34},y_{34},z_{34},x_{35},y_{35},z_{35},x_{36},y_{36},z_{36},x_{37},y_{37},z_{37},x_{38},y_{38},z_{38},x_{39},y_{39},z_{39},x_{40},y_{40},z_{40},x_{41},y_{41},z_{41},x_{42},y_{42},z_{42},x_{43},y_{43},z_{43},x_{44},y_{44},z_{44},x_{45},y_{45},z_{45},x_{46},y_{46},z_{46},x_{47},y_{47},z_{47},x_{48},y_{48},z_{48},x_{49},y_{49},z_{49},x_{50},y_{50},z_{50},x_{51},y_{51},z_{51},x_{52},y_{52},z_{52},x_{53},y_{53},z_{53},x_{54},y_{54},z_{54},x_{55},y_{55},z_{55},x_{56},y_{56},z_{56},x_{57},y_{57},z_{57},x_{58},y_{58},z_{58},x_{59},y_{59},z_{59},x_{60},y_{60},z_{60},x_{61},y_{61},z_{61},x_{62},y_{62},z_{62},x_{63},y_{63},z_{63},x_{64},y_{64},z_{64},x_{65},y_{65},z_{65},x_{66},y_{66},z_{66}$

Species:

Running:

Output: