Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_oP8_33_a_a-001

This structure originally had the label AB_oP8_33_a_a. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/8Z7Q
or https://aflow.org/p/AB_oP8_33_a_a-001
or PDF Version

Modderite (CoAs) Structure: AB_oP8_33_a_a-001

Picture of Structure; Click for Big Picture
Prototype AsCo
AFLOW prototype label AB_oP8_33_a_a-001
Mineral name modderite
ICSD 48027
Pearson symbol oP8
Space group number 33
Space group symbol $Pna2_1$
AFLOW prototype command aflow --proto=AB_oP8_33_a_a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

Other compounds with this structure

FeAs


  • Space group $Pna2_{1}$ #33 allows an arbitrary origin for the $z$-axis, which is set here by taking $z_{2} = 1/4$.
  • When $z_{1} = z_{2} =1/4$, the space group becomes $Pnma$ #62 and the structure is equivalent to MnP ($B31$).
  • (Lyman, 1984) sets $z_{1}$ = 0.2506, so this condition is almost fulfilled.
  • (Lyman, 1984) lists both space groups for both CoAs and FeAs, and prefers the MnP structure for these compounds.
  • AFLOW also places this structure in space group $Pnma$, and only predicts the lower symmetry structure if we lower the native tolerance using
  • aflow --proto=AB_oP8_33_a_a --tolerance=0.001 --params=a,b/,c/a,x$_{1}$,y$_{1}$,z$_{1}$,x$_{2}$,y$_{2}$,z$_{2}$ .

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4a) As I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) As I
$\mathbf{B_{3}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4a) As I
$\mathbf{B_{4}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) As I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4a) Co I
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) Co I
$\mathbf{B_{7}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4a) Co I
$\mathbf{B_{8}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) Co I

References

  • P. S. Lyman and C. T. Prewitt, Room- and high-pressure crystal chemistry of CoAs and FeAs, Acta Crystallogr. Sect. B 40, 14–20 (1984), doi:10.1107/S0108768184001695.

Prototype Generator

aflow --proto=AB_oP8_33_a_a --params=$a,b/a,c/a,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2}$

Species:

Running:

Output: